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We propose a nonlinear variational approach to remove impulsive noise in scalar images.

Taking benefit from recent studies on the use of stochastic resonance and the constructive

role of noise in nonlinear processes, our process is based on the classical restoration process

of Perona-Malik in which a Gaussian noise is purposely injected. We show that this new

process can outperform the original restoration process of Perona-Malik.

Aim and motivation : Removing impulsive noises from scalar images is a problem of

great interest since these short duration and high energy noises can degrade the quality of di-

gital images in a large variety of practical situations [1]. In this context of non Gaussian noise,

nonlinear processes are often invoqued. Among these nonlinear processes median filtering is

a classical tool leading to good results [2]. Nevertheless, these median filtering techniques

involves strong statistics calculation and can turn out to be highly time consuming to com-

pute. Another nonlinear process classically used for restoration tasks is the diffusion process

of Perona-Malik [3]. This process, based on a variational approach, presents short imple-

mentation time and has the ability to remove noises while keeping edges stable on many

scales. The Perona-Malik process also have its own limitations. Among these limitations,

the smoothing property of the diffusion process does not preserve the information present

in area with texture or small but significative gradients [4]. As paradoxical as it may seem,

to limit the effect of this drawback, we propose a new variant of the Perona-Malik process

in which a controlled amount of noise is injected in the nonlinear process. The possibility of



2

constructive action of noise in nonlinear processes is now a well established paradigm known

under the name of stochastic resonance (see [5] for a recent overview in electronic). Up to

now, this paradigm has essentially been illustrated with monodimensional signals. This work

is a new feature of noise enhanced information processing presented here for the first time

in the context of image restoration.

Method : Let ψori denotes an original image and ψ0 denotes the same image corrupted

by an input impulsive noise ξ imposed by the external environment :

ψ0(x, y) = ψori(x, y) + ξ(x, y) . (1)

The restoration of ψ0 aims at the removal of ξ from ψ0 to obtain an image as similar as

possible to ψori of Eq. (1).

The Perona-Malik’s restoration approach of ψ0 is equivalent to an iterative minimization

problem [6], solved by the resolution of the Partial Differential Equation (PDE) given by :

∂ψ(x, y, t)
∂t

= div(g(|∇ψ(x, y, t)|)∇ψ(x, y, t)), ψ(x, y, t = 0) = ψ0 , (2)

where g(.) is a nonlinear decreasing function of the gradient (∇) of ψ the restored image at

a scale t (which can be interpreted as a time evolution parameter) and div the divergence

operator. For practical numerical implementation, the process of Eq. (2) is discretized with a

time step τ . The images ψ(tn) are calculated, with Eq. (2), at discrete instant tn = nτ with n

the number of iterations in the process. We are going to compare the standard Perona-Malik

process of Eq. (2) with the following diffusion process

∂ψ(x, y, t)
∂t

= div(gη(|∇ψ(x, y, t)|)∇ψ(x, y, t)) , (3)

in which the nonlinear function g(.) in Eq. (2) has been replaced by gη(.) with

gη(u(x, y)) =
1
M

M∑

i=1

g(u(x, y) + ηi(x, y)) , (4)
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where ηi functions are M independent noises assumed independent and identically distribu-

ted with probability density function (pdf) fη and rms amplitude ση. The noises ηi which

are purposely added noises applied to influence the operation of the g(.) has to be clearly

distinguished from the input noise ξ of Eq. (1) which is considered as a noise imposed by the

external environment that we wish to remove. The choice of gη in Eq. (4) is inspired from

recent studies on the constructive action of noise in parallel arrays of nonlinear electronic

devices [7] and transposed here in the domain of image processing. The quality of the resto-

red image ψ(tn) at a given instant tn is assessed by the normalized crosscovariance Cψoriψ(tn)

given by :

Cψoriψ(tn) =
〈(ψori − 〈ψori〉)(ψ(tn)− 〈ψ(tn)〉)〉√
〈(ψori − 〈ψori〉)2〉〈(ψ(tn)− 〈ψ(tn)〉)2〉 , (5)

where 〈..〉 denotes the spatial average.

Results : For illustration of the processes of Eqs. (2) and (3), the image “cameraman”

(see image A in Fig. 2), which presents strong and small gradients, textured and non textured

regions of interest, has been taken as reference image in this study.

The original nonlinear function g(.) proposed by Perona-Malik in [3], with g(u(x, y)) =

e−
|u(x,y)|

k2 , is chosen in this study. The pdf fη of the M noises ηi in Eq. (3) are chosen Gaussian.

Other measures of similarity (like the Peak Signal to Noise Ratio) ,images and pdf for ηi

have been tested ; Results were quantitatively and qualitatively similar to the ones presented

below. In Fig. 1, the similarity between the restored and original image, assessed by the

normalized crosscovariance of Eq. (5), overpass the classical Perona-Malik process for all

values tested for M . This demonstrates the possibility of improving the performance of the

Perona-Malik process by injecting a non zero amount of the M noises ηi in Eq. (4). Moreover,

in Fig. 1, one can also notice that the convergence speed of the diffusion process is increased

with the presence of the M noises ηi. This acceleration of the convergence is another benefit
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Fig. 1. Normalized crosscovariance of Eq. (5) as a function of the iteration number n of the restoration

process. Dash-dotted lines stand for our modified version of the Perona-Malik process of Eqs. (3) and (4) for

various number M of independent noises ηi. Solid line stands for the classical Perona-Malik process of Eq. (2).

The rms amplitude ση of the M noises ηi is fixed to ση = 0.7. The parameter k in the nonlinear function g(.)

and the step time τ , characterizing the convergence speed of the diffusion process, are fixed to k = 0.2 and

τ = 0.25 in both Eqs. (2) and (3).

obtained from the purposely injected noises in Eqs. (3) and (4) by comparison with the

classical Perona-Malik’s process of Eq. (2). As visible in Fig. 2, the similarity improvement

A B C D

Fig. 2. Visual comparison of the performance of the restoration processes by Eq. (2) and Eq. (3). A : the

original ’cameraman’ image ψori of Eq. (1). B : the noisy version ψ0 of ψori corrupted by an additive salt and

pepper noise ξ (Eq. (1)) of standard deviation 0.1 ; C and D are respectively obtained with Eq. (2) and Eq. (3)

for the optimal number of iteration n corresponding to the highest value of the normalized crosscovariance in

Fig. 1 (M = 11 in the case of D).
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shown in Fig. 1 is also perceptible with the images themselves. The addition of noise leads to

a better contrast and a better preservation of the structure which are characterized by small

gradient (for example the buildings on the background is more visible and the texture of

the grass is preserved by comparison with the classical Perona-Malik process). In Fig. 3, the

number of iteration n of the diffusion processes of Eqs. (3) and (4) is fixed. The normalized

crosscovariance of Eq. (5) culminates at a maximum for an optimal nonzero noise level of

the M noises injected in Eq. (4). This clearly demonstrates the possibility of a constructive

role of noise in the diffusion process of Eqs. (3) and (4) for an image restoration task.
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Fig. 3. Normalized crosscovariance of Eq. (5) as a function of the rms amplitude ση of the noise purposely

injected in Eq. (4). Dash-dotted lines stand for our modified version of the Perona-Malik process of Eqs. (3)

and (4) for various number M of independent noises ηi. Solid line stands for the classical Perona-Malik process

of Eq. (2). The number of iteration n is fixed for all the lines to n = 75.

A. Histace and D. Rousseau Laboratoire d’Ingénierie des Systèmes Automatisées (LISA
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