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Abstract: Anisotropic regularization PDE’s (Partial Differential Equation) raised a strong interest in the field of image
processing. The benefit of PDE-based regularization methods lies in the ability to smooth data in a nonlinear
way, allowing the preservation of important image features (contours, corners or other discontinuities). In this
article, we propose a PDE-based method restoration approach integrating a double-well potential as diffusive
function. It is shown that this particular potential leads to a particular regularization PDE which makes it
possible integration of prior knowledge about the gradients intensity level to restore. As a proof a feasibility,
results of restoration are presented both on ad hoc and natural images to show potentialities of the proposed
method.

1 INTRODUCTION

Since the pioneering work of Perona-Malik (Perona
and Malik, 1990), anisotropic regularization PDE’s
raised a strong interest in the field of image process-
ing. Many regularization schemes have been pre-
sented so far in the literature, particularly for the
problem of scalar image restoration (see (Histace and
Ménard, 2008) for a complete review). In (Deriche
and Faugeras, 1996) authors propose a synthetic for-
mulation to express the global scheme of PDE-based
restoration approaches. More precisely, if we denote
ψ(r, t) :R2×R+ →R the time intensity function of a
corrupted image ψ0 = ψ(r,0), the corresponding reg-
ularization problem of ψ0 is equivalent to the mini-
mization problem described by the following PDE:

∂ψ
∂t

= cξ(‖∇ψ‖)∂2ψ
∂ξ2 + cη(‖∇ψ‖)∂2ψ

∂η2 , (1)

where η = ∇ψ/‖∇ψ‖, ξ⊥η and cξ and cη are two
weighting functions (also called diffusive functions).
This PDE can be interpreted as the superposition
of two monodimensional heat equations, respectively
oriented in the orthogonal direction of the gradient
and in the tangential direction: It is characterized by

an anisotropic diffusive effect in the privileged direc-
tions ξ and η allowing a non-linear denoising of scalar
image. Eq. (1) is of primary importance, for all clas-
sical methods can be expressed in that global scheme:
For instance, if we consider the former anisotropic
diffusive equation of Perona-Malik’s (Perona and Ma-
lik, 1990) given by

∂ψ
∂t

= div(c(‖∇ψ‖)∇ψ) , (2)

with ψ(r,0) = ψ0 and c(.) a monotonic decreasing
function, it is possible to express it in the global
scheme of Eq. (1) with

{
cξ = c(‖∇ψ‖)
cη = c′(‖∇ψ‖).|∇ψ|+ c(‖∇ψ‖)

(3)

Formulation of Eq. (1) is also interested, for it makes
stability study of classical proposed methods possi-
ble. What we proposed in this article is a prospective
study for the integration of a double well potential
as a diffusive function c(.) in Eq. (2). Our aim and
motivation for such a study are mainly to show that,
firstly, such a choice can lead to a stable PDE-based
approach for scalar image denoising that can over-
pass classical approach of Perona-Malik’s from which



it is derived and which presents instability problems
as formerly shown in (Catté et al., 1992), and, sec-
ondly, that this approach overcomes some drawbacks
of the classical methods like corner smoothing or pin-
hole effect. Layout of this article is the following one:
In section two, we introduce the double well func-
tion and derive the corresponding PDE in the global
scheme of Eq. (1). We also proposed in that section a
study of the stability of the derived PDE compared to
the stability of Perona-Malik’s approach. Third sec-
tion is dedicated to experimental and quantitative re-
sults. Fourth and last section contains conclusion and
discussion.

2 DOUBLE WELL POTENTIAL
AND CORRESPONDING PDE

2.1 Diffusive function

The double well potential considered in this article is
defined by the following function:

cDW (u) = 1−φ(u) = 1−
∫ u

0
v(α−v)(v−1)dv . (4)

Some graphical representations of Eq. (4) for differ-
ent values of α are proposed Fig. 1.
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Figure 1: (a), (b), (c) Plots of function cDW (.) of Eq. (4)
for different values of α: (a) 0 < α < 0.5, (b) 0.5 < α < 1,
and (c) α = 0.5. (d) Plots of function cPM(.) of Eq. (5) for
different values of k and α. Solid lines stand for k = 0.2,
dash-dotted lines for k = 0.4, and dotted lines for k = 0.6.

This function has to be compared with the classi-
cal Perona-Malik’s function cPM(.) given by:

cPM(u) = e−
u2

k2 , (5)

with k a soft threshold defining selectivity of cPM(.)
regarding values of image gradients. Fig. 1.(d) shows
graphical representations of cPM(.) defined by Eq. (5)
for different values of k. As one can notice on Fig.
1.(d), for ‖∇ψ‖ → 0, cPM(‖∇ψ‖) → 1, whereas for
‖∇ψ‖ → 1, cPM(‖∇ψ‖) → 0. As a consequence,
boundaries within images which are on a threshold,
function of k, are preserved from the smoothing ef-
fect of Eq. (2). One can notice on Fig. 1 that φ(.)
has been normalized. As a consequence, we are able
to ensure that 0 ≤ cDW (u) ≤ 1 for all values of u like
classical PM’s function of Eq. (2). Global variations
of cDW can be compared to those of cPM for α = 0
and α = 1. For 0 ≤ α < 1, since cDW is issued from
a double well potential, selectivity of Eq. (2) is more
important and centered on a particular gradient value
function of α. For instance, for α = 0.5, only gradi-
ents of value 0.5 are totally preserved from the diffu-
sive effect that can be interpreted as an integration of
directional constrains within the restoration process.
Moreover, we are now going to show, that integration
of cDW as diffusive function leads to interesting sta-
bility property of corresponding PDE.

2.2 Study of stability
As mentioned in first section, classical Perona-
Malik’s PDE presents instability problems. More pre-
cisely, as shown in (Catté et al., 1992), sometimes
noise can be enhanced instead of being removed. This
can be explained considering Eq. (3). If we con-
sider cPM(.) function, it appears that corresponding cη
function of Eq. (3), in the global scheme of Eq. (1),
can sometimes takes negative values (see Fig. 2.(a)
for illustrations). This leads to local instabilities of the
Perona-Malik’s PDE which degrades the processed
image instead of denoising it. Now, if we calculate
mathematical expression of cη with c(.) = cDW (.) of
Eq. (4), one can obtain that:

cη(‖∇ψ‖) = c′DW (‖∇ψ‖).|∇ψ|+ cDW (‖∇ψ‖) , (6)
Considering Eq. (6), if we plot this function, one

can notice that corresponding cη function never takes
negative values (see Fig. 2.(b) for illustrations): Dif-
fusive process remains stable for all gradient values
of processed image which is of primary importance.

3 EXPERIMENTAL RESULTS
We propose in this section to make a visual and

quantitative comparison between classical Perona-
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Figure 2: Plots of function cηPM and cηDW for different val-
ues of k and α. Solid lines stand for k = 0.2 and α = 0.5,
dash-dotted lines for k = 0.4 and α = 0.7 and dotted lines
for k = 0.6 and α = 1.

Malik’s PDE of Eq. (2) with diffusive function c(.) =
cPM(.) of Eq. (5), and proposed derived PDE with
c(.) = cDW (.) of Eq. (4) as diffusive function. For
quantitative comparisons, we will consider adapted
measure of similarity between non corrupted initial
image and restored one. This measure will depend
on the nature of original image. For practical numeri-
cal implementations, the process of Eq. (2) is sampled
with a time step τ. The restored images ψ(tn) are cal-
culated at discrete instant tn = nτ with n the number
of iterations.

3.1 Synthetic image
The first proposed image is the binary image of Fig.
3.(a) corrupted by a white gaussian noise of mean zero
and standard deviation σ.

(b)

(w)

(a) (b)

Figure 3: (a) Original synthetic image and (b) its corrupted
version ψ0 . Corrupting noise is a white Gaussian one of
mean zero and standard deviation σ = 0.05.

Considering binary nature of non corrupted image
(Fig. 3.(a)), quantification of the denoising effect of
Eq. (2) with c(.) = cPM(.) and c(.) = cDW (.), will be
estimated with Fisher’s index given by

IFisher =
(mw−mb)2

σ2
w +σ2

b
, (7)

with mw,b the average value of the pixels of the re-
stored image ψ(tn) being originally in the white (w)

or black (b) part of original image (Fig. 3.(a)) and
σw,b the corresponding standard deviation. Because
aim of this article is to show potentiality of the de-
scribed restoration method, only optimal results for
both compared approaches are presented Fig. 4: Val-
ues of k and α parameters are empirically chosen and
strategy for optimal choice is not describe here.
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Figure 4: (a) Restored image with c(.) = cPM(.) (classical
Perona-Malik’s approach), (b) Restored image with c(.) =
cDW (.) (proposed approach), (c) Fisher index function of
iteration number n, solid lines stands for classical Perona-
Malik’s approach, dotted line stands for proposed method.
k is equal to 0.4, α is equal to 0.5 (these values have been
empirically tuned).

As one can notice on Fig. 4, both visually and
quantitatively, restoration of binary image of Fig.
3.(a) is better with the diffusive function of Eq. (4).
More precisely, stability property of the double well
function prevents restoration process from possible
enhancement of corrupting Gaussian noise. Homoge-
nous areas of Fig. 4.(b) does not visually shows os-
cillations, nor corners of the white square as in Fig.
4.(a). This visual impression is confirmed by vari-
ations of Fisher’s index in Fig. 4.(c) that reaches a
level third times more important than with classical
approach of Perona-Malik’s. The value of α parame-
ter corresponding to best result is 0.5: this is not sur-
prising, for it is also the value of the gradient intensity
characterizing the boundaries of the with square. As a
consequence, this experiment also confirmed the pos-
sible gradient intensity selectivity of the proposed ap-
proach interpreted as a directional diffusion process.
We shall now experiment the proposed approach in
the context of restoration of real scalar images.



3.2 Real images
In this section, we propose to compare both our pro-
posed method with PM’s approach on the classical
“cameraman” image. For our purpose, this latter has
been corrupted by a white gaussian noise of mean
zero and standard deviation σ (see Fig. 5).

(a) (b)

Figure 5: (a) Original image “cameraman” and (b) its cor-
rupted version ψ0 . Corrupting noise is a white Gaussian
one of mean zero and standard deviation σ = 0.05.

Considering nature of non corrupted image (Fig.
5.(a)), quantification of the denoising effect of Eq.
(2) with c(.) = cPM(.) and c(.) = cDW (.), will be es-
timated with a classical PSNR measurement. Once
again, because aim of this article is to show potential-
ity of the described restoration method, only optimal
results for both compared approaches are presented
Figs. 6 and 7.

(a) (b)

Figure 6: (a) Restored image with c(.) = cPM(.) (clas-
sical Perona-Malik’s approach), (b) Restored image with
c(.) = cDW (.) (proposed approach). k is equal to 1 for
PM’s restoration approach, α is equal to 0.2 for proposed
approach (these values have been empirically tuned).

One can notice on Figs. 6 and 7 that both visu-
ally and quantitatively, it is possible to find a value
of α that can outperform results of classical PM’s ap-
proach. Quantitatively speaking PSNR is around 2dB
higher and visually speaking, boundaries on Fig. 6 are
preserved in a better way from the diffusion effect.

4 CONCLUSION
In this article, we have proposed an alternative dif-

fusive function for restoration of scalar images within
the framework of PDE-based restoration approaches.
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Figure 7: PSNR function of iteration number n, solid lines
stands for classical Perona-Malik’s approach, dotted line
stands for proposed method. k is equal to 1, α is equal to
0.2 (these values have been empirically tuned). These two
curves have been computed by calculation of the mean re-
sults obtained for one hundred different realizations of the
gaussian corrupting noise.

The proposed diffusive function allows integrating
prior knowledge on the gradient level to restore thanks
parameter α of Eq. (4) and remains always stable
on the contrary of classical PM’s approach. Pro-
posed method also remains fast and easy to com-
pute. Quantitatively speaking, better restoration re-
sults have been obtained. Concerning possible out-
looks, this proposed method could be associated to
the orientation selectivity of a PDE-based method al-
ready presented in the framework of that conference
in (Histace et al., 2007). Association of both proper-
ties should lead to a restoration method with interest-
ing directional properties for “vision in robotics” area
for example.
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