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ABSTRACT

This paper describes a novel method for active contour segmenta-
tion based on foreground/background alpha-divergence histogram
distance measure. In recent years a number of variational segmenta-
tion techniques have been proposed for a region based active contour
segmentation utilising different distance measures between probabil-
ity density functions (pdf) describing foreground and background re-
gions. The most common techniques use χ2, Hellinger/Bhattacharya
distances or Kullback-Leibler divergence. In this paper, it is pro-
posed to generalize these methods by using the alpha-divergences
distance function. This distance function depending on the selected
value of its parameter encompasses mentioned above classical dis-
tances. The paper defines a partial differential equation, associated
with alpha-divergence variational criterion, that governs the itera-
tive deformations of the active contour. The experimental results on
a synthetic data demonstrate that the proposed method outperforms
previously proposed histogram based methods in terms of segmenta-
tion accuracy and robustness with respect to type and level of noise.
The potential of the proposed technique for segmentation of cellu-
lar structures in fluorescence confocal microscopy data is also illus-
trated.

Index Terms— Segmentation, active contour, alpha-divergence,
confocal microscopy.

1. INTRODUCTION

A large variety of devices (MRI, TEP, X-RAY, CT-Scan, Cone-beam
CT, laser or 3D confocal microscopy...) contemporarily used for
acquisition of biomedical and medical data leads to the more and
more challenging segmentation problems accounting for different
characteristics of the acquired data including the diversity of asso-
ciated acquisition noises (Gaussian, Poissonian, Rician, Speckle...).
Among efficient segmentation methods in such context, active con-
tour models have attracted extensive interest in the past two decades.
Originally proposed in [1], the basic idea of the active contour is to
iteratively evolve an initial curve towards the boundaries of target
objects driven by a combination of internal forces, determined by
the geometry of the evolving curve and the external forces induced
from the image. The image segmentation method using active con-
tour is usually based on minimizing a functional which is defined in
such a way that it takes small values for curves close to the target
boundaries. The functional minimization leads to a partial differen-
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tial equation (PDE), constructed as the Gateaux derivative gradient
flow which steers the evolution of the corresponding active contours.

In the particular framework of a region based active contours
segmentation, some authors [2, 3, 4] have proposed to define a func-
tional that takes into account the probability density functions (pdf)
of both the inner and outer regions of the evolving curve. The varia-
tional criterion they proposed is based on the distances between pdfs
related to the regions defined by the evolving curve and predefined
reference pdfs of targeted object and background regions. Because
of the characteristics of medical and biomedical images in which
boundaries of target objects (organs, cells) are not well-defined and
the fact that inner and outer intensity distribution can be quite similar
(or at least the distribution overlap), such approaches can take into
consideration complex prior information on the noise distributions
of both object and background regions.

A first key issue for parametrization of these methods is
the choice of the distance function (or similarity measure) be-
tween two pdfs. Common distances used to compare two pdfs
are the χ2 distance, the Kullback-Leibler divergence and the
Hellinger/Bhattacharya distance [2, 3, 5]. In this article, we pro-
pose to introduce the alpha(α)-divergences as distance criterion
between two pdfs. This choice is mainly motivated by the fact that
this particular divergence family encompasses the aforementioned
classical distances with respect to the value of α, and can thus pro-
vide more efficient distances than classical ones as we will show it
in our experiments.

The work presented here focuses, first, on defining the PDE as-
sociated with alpha-divergence functional that will lead to the iter-
ative deformations of the active contour and second, on the evalua-
tion of this criterion on synthetic images (precision and robustness
with respect to both level and type of noise) as compared to classical
distances. Finally, in the context of the special session on “Anal-
ysis of Microscopy and Reconstructive Images for applications in
Medicine and Biology”, we present some preliminary results ob-
tained on biomedical data. More precisely, these experiments il-
lustrate the potential of the proposed segmentation methodology for
automatic extraction of cellular structures (here we segment the nu-
cleus) from actin tagged fluorescence confocal microscopy images.

2. HISTOGRAM BASED ACTIVE CONTOUR
SEGMENTATION

2.1. Principle and governing PDE
The histogram based active contour methods are based on compari-
son between the normalized histogram (pdf) of the object to be seg-



mented (so-called foreground) and the normalized histogram of the
background. Chan and Vese [6] worked with the assumption of a
Gaussian intensity distribution for both object and background and
pdfs having similar variances. This assumption is very restrictive
since in typical images these distributions are multi-modal, espe-
cially for medical and biomedical data. The implementation of the
histogram-based segmentation is described in [2, 3]. The method
presented by Aubert et al. [2] compares the reference and estimated,
from the data image, histograms for the background and foreground.
Herbulot et al. [3] gives the general equation for active contour
evolution with region-based criterion by considering normalized his-
tograms of image features. In this framework, the formulation of the
energy functional can be written:

J(Γ, Ωin ,Ωout) =

∫
<
ϕ(q̂(λ,Ωin), λ)dλ

+

∫
<
ϕ(q̂(λ,Ωout), λ)dλ+ β

∫
Γ

ds

where Ωin and Ωout are respectively the foreground (targeted ob-
ject) and the background of the image, Γ is the boundary between
Ωin and Ωout, ϕ is a cost function related to a given measure of
similarity between an estimated pdf q̂(λ,Ωi) (i = in or out and
λ ∈ [0..2n−1], with the n intensity quantization levels) and a given
reference pdf. Classically, q̂(λ,Ωi) are estimated using Parzen win-
dow approach as proposed in [3]. The reference pdfs are usually
defined by a reference curve, segmented manually, that defines outer
and inner pixels for each reference pdf. Subsequently, both reference
pdfs are calculated using Parzen window method or parametrically if
some priors on the pdf are known. The last term of Eq. (1) describes
a regularization of the contour with β being a positive constant.

As proposed in [3], calculating the Euler derivative of Eq. (1),
the corresponding evolution equation (PDE) of Γ is given by:

∂Γ
∂t

= [D(Ωin)−D(Ωout) + C(Ωout)− C(Ωin)

+ 1
|Ωin|

∂1ϕin(q̂(λ), λ) ∗ gσ(I(x))

− 1
|Ωout|∂1ϕout(q̂(λ), λ) ∗ gσ(I(x)) + β]N ,

(1)

with

D(Ωi) =
∫

Ωi
ϕ(q̂(λ,Ωi), λ)dλ

C(Ωi) =
∫

Ωi
∂1ϕ(q̂(λ,Ωi), λ)q̂(λ,Ω)dλ

i = {in, out} .

(2)

In Eqs. (1) and (2), ∂1ϕ denotes the first order derivative of ϕ
function with respect to q̂(λ,Ωi), gσ represents the Gaussian kernel
(with standard-deviation σ) used in estimation of q̂(λ,Ωi), I(x) the
intensity function of the segmented image at a pixel x, and N the
inward local normal vector of the moving curve Γ.

Eq. (1) is composed of a global region term, involving D(Ωi)
and C(Ωi), which are calculated on both foreground and back-
ground regions of the image, but also of a local term, calculated in
a given neighborhood of Γ, that makes local refinement of the final
segmented results.

For the classical ϕ functions proposed in the literature for mea-
suring similarity between an estimated and a reference pdfs, the χ2

function was originally proposed in [2], the Kullback-Leibler (KL)
divergence and the Hellinger/Bhattacharya distance in [3]. In this
article, we propose to introduce a different measure called the alpha-
divergence that encompasses the aforementioned distances and pro-
vides thus more flexibility for the distance definition improving final
segmentation results.

2.2. Alpha(α)-divergence as distance function
For any two pdfs q̂(λ,Ω) (representing here the estimated pdf) and
q(λ) (representing the reference pdf), the alpha-divergence is de-
fined as follows [7, 8]:

Dα(Ω) =

∫
Ω

ϕ(q̂(λ,Ω), λ)dλ , (3)

with

ϕ(q̂(λ,Ω), λ) = 1
α(1−α)

(
αq̂(λ,Ω)

+ (1− α)q(λ)

− [q̂(λ,Ω)]α[q(λ)]1−α
)
.

(4)

where α ∈]−∞,+∞[.
Similarity measure of Eq. (4) verifies the following properties

[9]:

1. Dα(Ω) is convex with respect to both reference and esti-
mated pdfs;

2. Dα(Ω) ≥ 0;

3. Dα(Ω) = 0 when the probability distributions (here pdfs)
are similar.

As a consequence, it can be considered as a distance between two
pdfs. Moreover, considering Eq. (4), for specific values of α, classi-
cal distances can be connected to alpha-divergence, for instance :

• D2(Ω) = 1
2
Dχ2(Ω);

• D 1
2
(Ω) = 2DHellinger(Ω);

• DKL(Ω) = 1
2

(
lim
α→0

Dα(Ω) + lim
α→1

Dα(Ω)
)
.

This being said, it is possible to derive from Eq. (4) the first
order derivative ∂1ϕ associated to alpha-divergence similarity mea-
sure:

∂1ϕ(q̂(λ,Ω), λ) =
1

α− 1

(
1− [q(λ)]1−α[q̂(λ,Ω)]α−1) , (5)

which completely defines the evolution PDE of Eq. (1).

3. STATISTICAL EVALUATION OF THE
PERFORMANCES ON SYNTHETIC IMAGES

In order to evaluate the performance of our criterion based on alpha-
divergence, we have created a peanut shaped binary image subse-
quently generating different corrupted versions of this image (see
Fig. 1) with a zero-mean Gaussian noise (which is the most common
acquisition noise encountered), a Poisson noise (which characterizes
scintigraphic imaging process or confocal microscopy), and a Rician
noise (which is typical of MR imaging). Each of these noises has the
same standard-deviation σ.



(a) (b)

(c) (d)

Fig. 1. Synthetic images used for segmentation tests: (a) Original
binary image, (b) Gaussian noise, (c) Poisson noise and (d) Rayleigh
noise. Here σ = 150.

To evaluate the performance of each distance criterion, we pro-
pose to evaluate the segmentation error (accuracy) through a quanti-
zation of the surface (expressed in pixels) defined by Γ curve at con-
vergence compared to the original mask. Performances are evaluated
for symmetric KL divergence, χ2 and Hellinger distances (which
corresponds to particular values of α), but also for intermediate val-
ues of α between 0 and 2. Results are aggregated in Tab. 1.

From a general point of view, these experiments allow a com-
parison between different similarity measures in the framework of
histogram-based active contour segmentation. Some specific obser-
vations can be pointed out: Firstly, as it can be seen in Tab. 1, for
each type of noise, there is at least one standard deviation σ where
there is a value of α for which our method provide more accurate
segmentation than any of previously proposed methods. For in-
stance, the boundaries of a target object in an image corrupted by a
Poisson noise with σ = 150 or 200 could be segmented more accu-
rately by the “1.5-divergence” than by any other typically used dis-
tance criteria. Secondly, Tab. 1 tends to show a link between optimal
α and the level of noise considered: For small noise levels (σ = 100
for instance), an alpha-divergence with a small α (α = 0.25 or
α = 0.5) shows a better accuracy than any other tested method,
and for a larger noise levels (σ up to 200), an alpha-divergence with
a larger α (α = 1.5 or 2) can provide better accuracy. These initial
experiments show that the alpha-divergence criteria give access to a
variability of distance measures that increases the adaptability of the
histogram-based active contour segmentation approaches to image
data exhibiting different pdfs distributions.

4. APPLICATION TO ACTIN TAGGED FLUORESCENCE
CONFOCAL MICROSCOPY IMAGES

4.1. Framework

Actin is a principal component of the cytoskeleton playing an im-
portant role in cell biomechanics. Studies of its properties can be
enhanced by providing information about its distribution within

cell population. To address this, actin tagged fluorescence con-
focal microscopy is a promising imaging technique. However, a
mandatory step to the characterization of the structural properties
of actin is the segmentation of the nuclei and membranes of iden-
tified cells within acquired microscopic images. This task is very
demanding due to highly complex cell appearances, a high level of
noise (Poisson) and strong non-homogeneity of intensity and gradi-
ent information for such images (see Fig. 2). We propose here to
show that histogram-based active contour segmentation using alpha-
divergence is a promising technique for extraction of cell shapes
from actin tagged fluorescence confocal microscopy. In the context
of this paper, we first focus on the segmentation of nuclei of the
cells.

4.2. Experiments
For the results shown in Fig. 2, all the tested segmentation methods
were initialized with the same green contour which was also used
for defining inner and outer regions for which reference pdf were
computed. This green curve was manually drawn by an expert on
a particular nucleus chosen for its central position within the im-
age (see Fig. 2). All nuclei are then segmented using the inner pdf
and the outer pdf of this green initial curve as reference pdfs and
with a manual initialization of Γ drawn in order to embed the whole
cell corresponding to the target nucleus. We can see on Fig. 2 that
α = 1.5 leads to a more accurate and satisfying segmentation than
classical distances.

One could notice Fig. 2(b) that an “optimized” regularization
version of Chan-Vese method can reach pretty good segmentation
results. However, in order to obtain such results, some tests we made
have shown that user has to specify both an initialization curve and a
regularization parameter per nucleus to reach as satisfying results as
those shown. This highly reduces the interest of Chan-Vese criterion
in our experimental context.

Finally, Fig. 3, shows nuclei segmentation obtained on the ad-
jacent slice to the one shown in Fig. 2 from the same 3D confocal
microscopy acquisition. It is important to emphasize that these seg-
mentations are obtained using the same pdf initialization and param-
eters as for the slice shown in Fig. 2. No new manual intervention
of the expert was required. We illustrate hence the stability of our
approach and its potential for fast automatic pre-segmentation of cell
nuclei.

5. CONCLUSION
In this article, we have defined a new active contour criterion for
biomedical image segmentation based on alpha-divergence of object
and background pdfs. Our method outperfoms, in terms of segmen-
tation accuracy and robustness, to both level and type of noises, all
commonly considered distances to evaluate pdf similarity. The po-
tential of our approach is illustrated on 3D confocal microscopy data.
The next step is to automatically select a value of α parameter rely-
ing on the type and the level of noise in the data.
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