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Abstract. Active contour methods are often methods of choice for de-
manding segmentation problems, yet segmentation of medical images
with complex intensity patterns still remains a challenge for these meth-
ods. This paper proposes a method to incorporate interactively spec-
ified foreground/background regions into the active model framework
while keeping the user interaction to the minimum. To achieve that,
the proposed functional to be minimized includes a term to encourage
active contour to separate the points close to the specified foreground
region from the points close to the specified background region in terms
of geodesic distance. The experiments on multi-modal prostate images
demonstrate that the proposed method not only can achieve robust and
accurate results, but also provides an efficient way to interactively im-
prove the results.
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1 Introduction

Originally proposed in [1], active contour models for image segmentation have
attracted extensive research in the past two decades. The basic idea of the active
contour is to iteratively evolve an initial curve towards the boundaries of target
objects driven by the combination of internal forces determined by the geometry
of the evolving curve and the external forces induced from the image. Image
segmentation method using active contour is usually based on minimizing a
functional which is so defined that for curves close to the target boundaries it
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has small values. To solve the functional minimization problem, a corresponding
partial differential equation (PDE) can be constructed as the Gateaux derivative
gradient flow to steer the evolution of active contours.

The PDEs governing the evolution of active contours can be numerically
approximated either by explicit or implicit methods. For explicit methods, an
active contour is represented in a parametric form such as cubic B-spline [2]. The
contour evolves as the parameters controlling the contour change. For implicit
methods, also known as level set methods, an active contour is embedded as a
constant level set in an embedding function (also called level set function) defined
in a higher dimensional space. The evolution of the active contour is carried out
implicitly by evolving its embedding function [3]. Thanks to level set’s inherent
capability to handle topological changes and straightforward extensibility to cope
with high dimensional data, since the pioneering work in [4], level set based
segmentation has prompted a large amount of methods ranging from applying
a variety of image information [5–9] to integrating static/statistical shape prior
information [10, 11].

Most existing active contour methods are focused on fully automatic seg-
mentation. Once an initial contour is specified, users have no control over the
evolution of the contour. If the result turns out to be unacceptable, the only
things can be done by the users are either specifying another initial contour or
tuning a few parameters related to the curve evolution algorithm. Then the users
need to run the curve evolution again and wish the result could be better this
time. This procedure is tedious and normally requires detailed knowledge of the
segmentation method. Furthermore, there is no guarantee that a satisfactory re-
sult can be achieved. Due to these limitations, although active contour methods
have found great success in some special areas, they are still of limited practical
use in medical data segmentation. To change this situation, it is essential to in-
troduce a user interaction mechanism into the active contour framework. In this
paper, we propose an active contour method to allow users to specify foreground
and background regions so that segmentation results can be progressively refined
in a controllable way while keeping the user interaction to the minimum.

Prostate and surrounding organs segmentation is a demanding task due to
the organs’ close spatial proximity and changes in organs shape and appearance.
Additionally depending on the imaging modality used, segmentation algorithm
has to cope with a very low contrast and weak organ boundaries, complex textu-
ral patterns representing different organs or very high level of random and struc-
tured noise. Recently number of segmentation techniques have been proposed in
literature aiming at semi-automatic prostate segmentation [12–14]. Most of these
techniques do not allow though for interactive improvements of the segmenta-
tion, as the user interaction is limited to the algorithm initialization. Authors
in [15] introduced such the interaction mechanism in their algorithm but it was
based on, prior learn, statistical shape model of an organ of interest and image
intensity information was not directly used in the algorithm. In this paper an
algorithm similar, in guiding interaction principle, is proposed but contrary to
[15] the algorithm directly uses the image intensity information.
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2 Methodology

Let’s denote the input image as I and the specified foreground and background
regions as Rf and Rb respectively. Let S(p) represent an open curve with pa-
rameterization p normalized in the range of [0, 1], i.e., S : [0, 1] → R

2 ∈ Ω with
Ω denoting the entire image domain. Then the geodesic distance function for
the specified foreground region, denoted as Df(x), can be defined as

Df (x) = inf
S∈Sf

∫

1

0

G(S(p); I) · |S′(p)| dp (1)

where x denotes the coordinates of a point in the image domain and Sf represents
the set of curves that connect the point x and the specified foreground region Rf ,
i.e., Sf = {S : S(0) = x and S(1) ∈ Rf}. For an image with multiple channels,
the geodesic metric G(x; I) is related to the smoothed gradient of each channel:

G(x; I) =
N

∑

i=1

|Gσ ∗ ∇Ii(x)| (2)

where Gσ is the Gaussian function and N is the number of channels. Similarly,
the geodesic distance function for the specified background region, denoted as
Db(x), can be defined as

Db(x) = inf
S∈Sb

∫

1

0

G(S(p); I) · |S′(p)| dp (3)

with Sb = {S : S(0) = x and S(1) ∈ Rb}.
Since the geodesic metric G(x, I) is nonnegative, the geodesic distance func-

tions can be calculated by solving the following eikonal equations with boundary
conditions:

{

|∇Dx(x)| = Gx(x; I)
Dx(x) = 0 for ∀x ∈ Rx

(4)

where x ∈ {f, b}. Efficient approaches to numerically solve this type of equations
can be found in [16, 17].

Let C(p) denote a close curve — a curve that divides the image domain into
disjoint regions. Then, as illustrated in Fig. 1, the corresponding level set function
φ(x) can be defined to satisfy the following conditions: (1) C = {x : φ(x) = 0};
(2) φ(x) > 0 for x inside the contour and φ(x) < 0 for x outside. The normal of
the active contour N is defined as the unit vector pointing to the direction that
expands the contour. The proposed functional to be minimized is defined as

E(φ(x)) =

∫

Ω

Df (x) · H(φ(x)) dx +

∫

Ω

Db(x) · (1 − H(φ(x))) dx

+ α

∫

Ω

g(x; I) · |∇H(φ(x))| dx (5)
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φ(x) < 0

φ(x) > 0

C

N

−N

Fig. 1. Some conventions regarding active contour and level set applied in the paper.

where H(x) is the Heaviside function which equals to 1 when x ≥ 0 and 0
otherwise. The functional consists of three terms. The first two terms indicate
the fact that a good segmentation should separate pixels having small geodesic
distances to the specified foreground region from those having small geodesic
distances to the specified background region. The last term, weighted by a pos-
itive scalar α, is from the geodesic active contour model [6] used for accurate
location of object boundary, wherein g(x; I) = exp(−β · G(x; I)) with the pos-
itive scalar β controlling the decreasing rate of the exponential function with
respect to G(x; I).

By deriving the Gateaux derivative of the proposed functional, the implicit
PDE, describing the evolution process of the level set function to achieve func-
tional minimization, can be expressed as

∂φ(x, t)

∂t
= (Db(x) − Df (x))|∇φ(x, t)|

+ α div

(

g(x; I) ·
∇φ(x, t)

|∇φ(x, t)|

)

|∇φ(x, t)| (6)

Note the introduction of time t into the level set function to emphasize that it
is an evolving process. Although the implicit PDE is practically used for level
set implementation, its equivalent explicit PDE can reveal more insights into
the evolution of the active contour itself. The equivalent explicit PDE can be
written as

∂C(p, t)

∂t
= (Db(C(p, t)) − Df (C(p, t))) · N

+α (g(C(p, t); I) · κ− < ∇g(C(p, t); I), N >) · N (7)

where κ is the curvature of the active contour and < ·, · > denotes the inner
product of two vectors. The first term in the equation describes a region com-
petition process. For every point on the active contour, there are two type of
forces competing in opposite directions along the normal, namely, the contrac-
tion force exerted by Rf and the expanding force exerted by Rb. The result of
the competition depends on the geodesic distances between the specific point
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on the contour and the specified regions. It can also be seen that, for images
with weak or ambiguous boundaries, g(x; I) can be set to constant 1, leading to
the simplification of the second term to ακN which is a curvature flow used for
curve smoothing.

3 Experimental Results

The objective of the first experiment is to demonstrate execution of the differ-
ent stages of the proposed method. For this purpose bladder was selected as
an object of interest (foreground) as it is an organ which is relatively easy to
recognize and segment. The input MRI image with superimposed user selected
regions is shown in Fig. 2(a). It can be seen that the regions can be defined
by casual strokes with different labels, which reduces the efforts of user interac-
tion. The geodesic metric computed using Equ. (2) is shown in Fig. 2(b) with
intensity inverted for better a illustration of details. The geodesic distance func-
tions associated with the bladder and non-bladder regions, as defined by the
shown strokes, were computed using the fast marching method and are shown in
Fig. 2(c) and Fig. 2(d) respectively. It can be seen that the functions increased
as they propagated from their specified regions and they increased sharply as
they crossed strong edges.

(a) I , Rf and Rb (b) inverted G(x; I)

(c) Df (x) (d) Db(x)

Fig. 2. (a) Original MRI image with superimposed specified foreground (red) and back-
ground (blue) regions’ strokes; (b) Geodesic metric with intensity inverted; (c) and (d)
Geodesic distance functions associated with the bladder and non-bladder regions re-
spectively.
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Fig. 3 shows a few iterations of the curve evolution process. To demonstrate
the robustness of the method, the initial contours were chosen to be very dis-
similar to the shape of the bladder. As shown in the first image in Fig. 3 these
initial contours were defined as a set of uniformly spaced circles. As the algo-
rithm progressed, the curves merged or vanished due to the level set’s inherent
ability to deal with topological changes and, at the same time, they approached
to the desired boundary due to the competition of geodesic distances induced
from the bladder and non-bladder regions.

Fig. 3. A few iterations of active contour evolution with input strokes shown in
Fig. 2(a). #iterations = 0, 2, 5, 10, 15, 20 from left to right and from top to bot-
tom.

The second experiment was carried out to demonstrate another benefit of the
proposed method — it is possible to improve segmentation results progressively.
Fig. 4(a) shows the input MRI image with superimposed, region specifying,
strokes, where different colors differentiate region labels and line widths differ-
entiate regions selected in different stages of the segmentation process. Three
user adjustments were performed. For the initial selection, specified regions,
indicated by the bold strokes in Fig. 4(a), were used to get a rough segmen-
tation as shown in Fig. 4(b). Based on this rough segmentation, more regions,
indicated as median sized strokes, were added for the refined result shown in
Fig. 4(c). Finally, more regions, indicated as the thin strokes, were added to get
the final result shown in Fig. 4(d). The method is reasonably efficient, in terms
of computational time, for interaction. For the image shown in Fig. 4(a) with
size 240 × 320, the computation part of the process took about 0.8 second for
each region adjustment on an Intel Quad CPU (Q6700) 2.66GHz within Matlab
environment. In order to achieve efficiency, active contours were initialized as
the boundary of {x : Df (x) − Db(x) > 0} to reduce the number of iterations.
Additionally, AOS scheme [18] was applied to increase the time step for each
iteration, without compromising the numerical stability of the algorithm.

Examples of the segmentation results for rectum, seminal vesicles and prostate
delineated in an MRI data are shown in Fig. 5. It can be seen that even for the
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(a) (b)

(c) (d)

Fig. 4. Illustration of progressive segmentation. (a) Original MRI image superimposed
with user specified regions (red for foreground and blue for background); (b) segmenta-
tion result from the first region selection with bold strokes in (a) as specified regions; (c)
segmentation result from the second region adjustment with medium stokes in (a) as
additional specified regions; (d) segmentation result from the third region adjustment
with thin strokes in (a) as additional specified regions.

seminal vesicles, represented in the MRI by a complex textural pattern, an ac-
curate segmentation can be obtained with only few approximate strokes.

The results obtained for organ segmentation from a CT data are shown in
Fig. 6. In this case the method preformed well even though the segmented organs,
represented by similar intensity patterns, are of low contrast with very weak
edges between organs.

Fig. 7 shows segmentation result of the prostate from a transrectal ultra-
sound (TRUS) image. Again the method preformed well despite a high level of
noise, typical for this imaging modality. It should be stressed that for all the
results shown in this section no image pre-processing was used. The method
worked directly ”out-of-the-box” with only active contour’s smoothing param-
eter adjusted when segmenting different organs, though no changes were made
to the method’s design parameters when the same organ was segmented from
different imaging modalities.

The paper does not contain a formal quantitative evaluation of the proposed
method because due to the interactive nature of the method, obtained organs
delineation will always reflect user subjective judgment and therefore a compar-
ison of the segmentation results with the ground truth data would be effectively
testing inter- and/or intra- operator variability, thereby would not reflect on the
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(a)

(b)

(c)

Fig. 5. Example of segmentation results from MRI data, with the strokes definitions
shown in the left column and the corresponding segmentation results in the right col-
umn for (a) rectum, (b) seminal vesicles, (c) prostate.

method itself. In terms of the method efficiency, it took for the presented here
results, at the most three and on many occasions just a single interaction to ob-
tain the delineation which were considered to be accurate by an operator. The
whole process of an organ segmentation on a tablet computer, for the shown
results, took on average between two and three seconds.

Overall, the authors believe that the proposed method provides good tradeoff
between generalization properties of an automatic method and needs for clini-
cian’s subjective judgment.

Although for the sake of the presentation clarity a simple hybrid active con-
tour model [19] was used it is straightforward to combine the proposed method
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(a)

(b)

(c)

Fig. 6. Example of the segmentation results from CT data for (a) rectum, (b) seminal
vesicles and (c) bladder.

Fig. 7. Prostate segmented from the transrectal ultrasound image.

with the most of existing active contour methods to equip them with the pow-
erful tool of progressive refinement while keeping specific characteristics of the
original method. Possible extensions can include active contour models incor-
porating a prior knowledge of the organ shape [11], topological constraints [20]
or texture by which organ is represented in a given imaging modality [21]. The
method can be used with 3D data and with the help of Equ. (2) the method can
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be adopted for simultaneous organ segmentation in registered multiple-modality
data.

4 Conclusions

The paper describes a novel segmentation method which enable to incorporate
user specified regions into the active contour framework. The method can achieve
robust results by evolving an active contour through competition of the forces
induced by the specified regions and the input image providing an efficient way
to refine segmentation results progressively. The method has been shown to
be robust and able to cope with medical images of different modalities. More
specifically it has been shown that the proposed method is an effective tool
for segmentation of prostate and proximate organ at risk in imaging modalities
typically used in diagnosis and treatment of prostate cancer patients.
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