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ABSTRACT
We demonstrate the possibility of improving the standard Pe-
rona-Malik's anisotropic diffusion process for image restora-
tion thanks to a constructive action of a purposely injected
noise. The effect is shown to be robustly preserved for var-
ious types of native noise when applied to textured images.
This is interpreted as a novel instance of the phenomenon of
stochastic resonance or improvement by noise in image pro-
cessing.

1. A STOCHASTIC VARIANT OF
PERONA�MALIK'S PROCESS

We consider an original image ψori coupled with a noisy
component ξ which degrades the observable image ψ0. Our
goal is to remove the noise component ξ of ψ0 in order to ob-
tain an image as similar as possible to ψori. We propose to
tackle this standard restoration task with a stochastic variant
of Perona�Malik's process, recently introduced in [1], that
we brie�y describe here. The original Perona�Malik's pro-
cess [2] is an anisotropic diffusion process inspired from the
physics of temperature diffusion in which the observable noisy
image ψ0 is restored by considering the solution of the partial
differential equation given by

∂ψ

∂t
= div(g(‖∇ψ‖)∇ψ), ψ(x, y, t = 0) = ψ0 , (1)

where the anisotropy of this diffusion process is governed by
g(.) a nonlinear decreasing function of the norm of the gradi-
ent ∇ψ. In this study, we consider the process given by

∂ψ

∂t
= div(gη(‖∇ψ‖)∇ψ) , (2)

which is of a form similar to Eq. (1) except for the nonlinear
function gη(.) which is given by

gη(u) = g(u + η(x, y)) , (3)

where η is a noise assumed independent and identically dis-
tributed with probability density function (pdf) fη(u) and rms
amplitude ση . The noise η, which is distinct from the na-
tive noise component ξ to be removed, is a purposely added

noise applied to in�uence the operation of g(.). In [1], we
have shown that this injection of noise in Eq. (3) can improve
the restoration process by comparison with standard Perona�
Malik's process of Eq. (1) when the native noise component
ξ is an impulsive noise.

In this study, we consider the stochastic variant of Perona�
Malik's process given by Eqs. (2) and (3), and we investigate
the possible extension of the previous results obtain in [1] to
other types of native noises ξ, and the robustness of this con-
structive action of the noise.

2. NOISE�ENHANCED PERFORMANCE

For illustration, we choose the original nonlinear function g(.)
proposed by Perona�Malik in [2], given by

g(u) = e−
‖u‖2

k2 , (4)
where parameter k can be seen as a soft threshold controlling
the decrease of g(.) and the amplitude of the gradients to be
preserved from the diffusion process. The pdf fη(u) of the
noise η in Eq. (2) is chosen Gaussian. We choose to assess the
performance of the restoration processes with the normalized
cross-covariance Cψoriψ(tn),

Cψoriψ(tn) =
〈(ψori − 〈ψori〉)(ψ(tn)− 〈ψ(tn)〉)〉p
〈(ψori − 〈ψori〉)2〉〈(ψ(tn)− 〈ψ(tn)〉)2〉 , (5)

with 〈..〉 a spatial average, ψ(tn) the images calculated with
Eqs. (1) or (2) at discrete instants tn = nτ where n is the
number of iterations in the process and τ the time step used
to discretize Eqs. (1) and (2). The image �cameraman� (see
image (d) in Fig. 1), is chosen as reference for the original im-
age ψori. Noisy versions of this original image are presented
as the observable images ψ0 of our restoration task in Fig. 1.
The 3 observable images (a,b,c) of Fig. 1, which present the
same level of similarity (assessed by the normalized cross-
covariance of Eq. (5)) with the original image ψori, have re-
spectively been corrupted by an additive, a multiplicative and
an impulsive noise component ξ.

We are now in position of comparing the restoration of
the noisy images (a,b,c) of Fig. 1 by the classical Perona�
Malik's process of Eq. (1) and our stochastic version of this



process. As noticeable in Fig. 2, the similarity between the re-
stored and original image, assessed by the normalized cross-
covariance of Eq. (5), overpasses the classical Perona�Malik's
process only when the native noise ξ is impulsive.

(a) (b)

(c) (d)

Fig. 1. The original image ψori cameraman (d) corrupted by
3 different native noises ξ: (a) additive zero-mean Gaussian
noise with ψ0 = ψori + ξ, (b) multiplicative Gaussian noise
of mean unity with ψ0 = ψori + ξ.ψori, (c) impulsive noise.
The rms amplitude of these noises are separately adjusted in
order to have each of the images (a,b,c) characterized by the
same normalized cross-covariance (given in Eq. (5)) with the
original image equal to 0.87.

A subjective visual comparison of the performance of the
processes of Eqs. (1) and (2) is also given in Fig. 3. By
contrast with the results obtained with the normalized cross-
covariance, in Fig. 3, images restored by the process of Eq.
(2) appear to be of better visual interest than those obtained
with the classical Perona�Malik's process of Eq. (1) for all
the 3 types of noise component tested. This is especially vis-
ible, in Fig. 3, in areas of the �cameraman� image character-
ized by small gradients (face, buildings in the background, or
textured area like grass) which are preserved from the diffu-
sion process and better restored with the presented stochastic
approach of Eq. (2) than with the classical Perona�Malik's
process of Eq. (1).

In order to provide a quantitative validation of this visual
observation with an objective measure of similarity, we pro-
pose to study the evolution of the normalized cross-covariance
for both processes of Eq. (1) and Eq. (2) when a textured re-
gion of interest (see image (d) in Fig. 4) is extracted from the
�cameraman�image. As visible in Fig. 4, the stochastic ver-

sion of the Perona�Malik's process outperforms the classical
version of this process for all the noise components tested.
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Fig. 2. Quantitative performance of the restoration processes
by Eq. (1) and Eq. (2) for the 3 observable images (a,b,c) of
Fig. 1 respectively standing for the (a,b,c) graphes of this �g-
ure. Each graph shows the normalized cross-covariance of
Eq. (5) as a function of the iteration number n of the restora-
tion process. Dash-dotted lines stand for our stochastic ver-
sion of the Perona�Malik's process of Eqs. (2) and (3). Solid
lines stand for the classical Perona�Malik's process of Eq. (1).
Parameter k in the nonlinear function g(.) and time step τ ,
characterizing the convergence speed of the diffusion process,
are �xed to k = 0.1 and τ = 0.2 in both Eqs. (1) and (2). The
standard deviation ση of the purposely injected noise is �xed
to 0.2.

A complementary analysis is presented in Fig. 5 where
the number of iteration n of the diffusion process of Eq. (2)
is �xed. The evolution of the normalized cross-covariance of
Eq. (5) is then presented as a function of the rms amplitude ση

of the Gaussian noise purposely injected in Eq. (3). As visi-
ble in Fig. 5, the normalized cross-covariance of Eq. (5) ex-
periences, for all the 3 tested noise components, a nonmono-
tonic evolution and culminates at a maximum for an optimal
nonzero level of the Gaussian noise injected in Eq. (3). All
these results demonstrates that the possibility of improving
the performance of the Perona�Malik's process by injecting a
non zero amount of the noise η in Eq. (3) is not restricted to
impulsive noise but can be extended to other noise coupling
like multiplicative or additive noise components.

At last, we investigate the robustness of the noise enhanced
image restoration demonstrated in this section with respect to



Fig. 3. Visual comparison of the performance of the restora-
tion processes by Eq. (1) and Eq. (2) with the same condi-
tions of Fig. 2. The left column shows the results obtained
with usual Perona�Malik's restoration process of Eq. (1) and
the right column with our stochastic version of the Perona�
Malik's process of Eq. (2). Each image is obtained with the
iteration number n corresponding to the highest value of the
normalized cross-covariance of Fig. 2. The top, middle and
bottom lines are respectively standing for the additive, multi-
plicative and impulsive noise component described in Fig. 1.
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Fig. 4. Same as in Fig. 2 except that the analysis is restricted
to a textured area of the �cameraman� image delimited by a
solid line in (d).
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Fig. 5. Same as in Fig. 4 except that the normalized cross-
covariance of Eq. (5) is here plotted as a function of the
rms amplitude ση of the Gaussian noise η purposely injected
in Eq. (3) with the number of iteration n which is �xed to
n = 15. Solid, dash-dotted and dotted lines are respectively
standing for the additive, multiplicative and impulsive noise
components described in Fig. 1



the choice of parameter k in g(.) of Eq. (4). As visible in
Fig. 6, for large amount of injected noise, the constructive ac-
tion of the noise in Eqs. (1) or (2) does not critically depend on
the choice of parameter k. This is by contrast with standard
Perona�Malik's process which does not present this robust-
ness property. The image chosen as reference in Fig. 6 is the
�D57� textured image extracted from the Brodatz's databank.
Multiple other con�gurations have been tested with variations
concerning the nonlinear function g(.) of Eq. (4), the injected
noise η of Eq. (3), the measure of similarity (like SNR) and
the reference image, and they all demonstrate the same possi-
bility of a robust constructive action of the noise to improve
classical Perona�Malik's process.
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Fig. 6. Normalized cross-covariance of Eq. (5) plotted as a
function of the parameter k of the nonlinear function g(.)
for various rms amplitude ση of the Gaussian noise η pur-
posely injected in Eq. (3). The number of iteration n is
�xed at the maximum of the normalized cross-covariance.
Same designation as in Fig. 2 for the solid and dashed dotted
lines. The original Brodatz texture�D57� (d) is respectively
corrupted by (a) an additive zero-mean Gaussian noise with
ψ0 = ψori + ξ, (b) a multiplicative Gaussian noise of mean
unity with ψ0 = ψori + ξ.ψori, (c) an impulsive noise.

3. DISCUSSION

By showing the robustness of the stochastic version of Perona�
Malik's process, this study contributes to extend the interest
of the results presented in [1], which were restricted to the
case of an impulsive noise with a �xed parameter k, to other

�elds of imaging. Therefore, this process may �nd appli-
cability in the restoration of textures obtained from imaging
systems corrupted by thermal noise (widely modeled by an
additive Gaussian noise) or from coherent imaging systems
(SONAR, SAR, or LASER) where the images are corrupted
by a multiplicative noise (i.e. speckle noises) [3].

Beyond practical perspectives, our process can be seen as
a novel instance of stochastic resonance. Introduced some
twenty years ago in the context of nonlinear physics [4], sto-
chastic resonance has gradually been reported, under various
forms, in a still-increasing variety of processes (see for exam-
ple [5] for a review in physics, [6] for an overview in electri-
cal engineering and [7] for the domain of signal processing).
Stochastic resonance can be described as the possibility of
improving the situation of some information-bearing quantity,
thanks to the action of an independent noise. This is clearly
the paradigm established here, as a proof of feasability, for
an image restoration task. Up to now, stochastic resonance or
noise aided signal processing has essentially been reported for
mono-dimensional signal processing tasks like detection or
estimation [7]. A classical situation relevant to stochastic res-
onance is obtained when a small information-carrying signal
is by itself too weak to elicit an ef�cient response from a non-
linear system (presenting for example a threshold) [8]. The
noise then cooperates constructively with the small signal, in
such a way as to elicit a more ef�cient response from the non-
linear system (noise helps the signal to reach the threshold
in the example). This cooperative effect usually exhibits a
maximum at an optimum noise level beyond which the noise
becomes too strong (noise can reach the threshold by itself in
the example). The constructive action of noise reported here
for an image processing task presents some similarities with
this usual mechanism of stochastic resonance. In our case,
the nonlinearity comes from the function g(.) of Eq. (4) for
which parameter k somehow plays the role of a soft thresh-
old. A small information-carrying gradient, too weak to reach
the soft threshold presented by g(.), is diffused by the stan-
dard Perona�Malik's process. Therefrom, like in the clas-
sical stochastic resonance mechanism, the noise is found to
cooperate constructively with the small gradient to reach the
soft threshold in order to be preserved from the diffusion pro-
cess. As illustrated in Fig. 5 when raising the level of the
noise injected in the nonlinear process, a point beyond which
the noise becomes too strong is reached and the cooperative
effects demonstrated here exhibits the classical signature of
stochastic resonance. Various other types of stochastic reso-
nance have been studied with monodimensional signals and
it may be interesting to examine in detail how they could be
transposed in a nontrivial way (i.e. not in pixel to pixel pro-
cess) to image processing.

Concerning anisotropic diffusion applied to image pro-
cessing, it has been widely developed (see [9] for an overview)
for image restoration since its introduction by Perona and Ma-
lik in [2], with more complex anisotropic diffusion processes.
They have in common with Perona�Malik's process, chosen
here for its simplicity, to involve a nonlinear process inspired
from the physics of temperature diffusion. [10] and [11], for



example, can be considered as extensions of Perona�Malik's
process [2]. Both methods still involve a nonlinear process
driven by the nonlinear function g(.) of Eq. (4). [10] com-
putes the calculation of g(.) on the gradient ∇ψ of Eq. (1)
convolved with a Gaussian kernel with a �xed standard de-
viation, and [11] computes the same calculation but with a
Gaussian kernel with a standard deviation which is function
of time step τ used for discretization of the partial differen-
tial equation. Introduction of these Gaussian kernels tends to
smooth variations of the gradient, and as a consequence, en-
sures stability of the solution by contrast with Perona�Malik's
approach. As a perspective, it will be interesting to study how
the constructive action of the noise reported here would oper-
ate with these extensions of Perona�Malik's process.
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