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Abstract—The report proposed an interpretation for the
mechanism of noise-enhanced image restoration with nonlinear
PDE (Partial Differential Equation) recently demonstrated in
literature. A link is established between the action of noise in
a nonlinear Perona–Malik anisotropic diffusion and stochastic
resonance in memoryless nonlinear systems for 1-D signals.
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I. I NTRODUCTION

It is progressively realized that noise can play a construc-
tive role in nonlinear information processes. The starting
point of the investigation of such useful-noise effect has been
the study of stochastic resonance [Benzi et al., 1981], [Benzi
et al., 1982], [Wiesenfeld and Moss, 1995]. Originally intro-
duced to describe the mechanism of a constructive action of
a white Gaussian noise in the transmission of a sinusoid
by a nonlinear dynamic system governed by a double-
well potential [Gammaitoni et al., 1989], [McNamara and
Wiesenfeld, 1989], the phenomenon of stochastic resonance
has experienced large varieties of extensions with variations
concerning the type of noise, the type of information-
carrying signal or the type of nonlinear system interacting
with the signal-noise mixture (see for example [Gammaitoni
et al., 1998] for a review in physics, [Harmer et al., 2002]
for an overview in electrical engineering and [Chapeau-
Blondeau and Rousseau, 2002] for the domain of signal pro-
cessing). All these extensions of the original setup preserve
the possibility of improving the processing of a signal by
means of an increase in the level of the noise coupled to this
signal. New forms of useful-noise effect, related to stochastic
resonance or not, continue to be demonstrated. One current
domain of interest is the study of non-trivial transposition of
stochastic resonance to image processing [Blanchard et al.,
2008], [Rousseau et al., 2010]. In this report, we come back
on the results of a prospective study presented in [Histace
and Rousseau, 2006] and we establish a link between this
work [Histace and Rousseau, 2006] and the mechanisms
encountered in the monodimensional domain.

This article is organized as follows: we first recall the
stochastic anisotropic diffusion equation of interest origi-
nally proposed in [Histace and Rousseau, 2006]. We then

propose a simplified version of this equation stochastic
diffusion equation preserving the essential properties ofthe
former historical equation proposed in [Perona and Malik,
1990]. Therefrom, we establish a formal analogy between
useful-noise effect in image anisotropic diffusion and the
mechanism of stochastic resonance in static non-linearity
with additive signal–noise mixture in monodimensional sig-
nals.

II. STOCHASTIC ANISOTROPIC DIFFUSION

The original Perona-Malik process [Perona and Malik,
1990] is an anisotropic diffusion process inspired from the
physics of temperature diffusion in which an observable
noisy imageψ0 is restored by considering the solution of
the PDE given by

∂ψ

∂t
= div(g(‖∇ψ‖)∇ψ), ψ(x, y, t = 0) = ψ0 (1)

where the anisotropy of this diffusion process is governed
by g(·) a nonlinear decreasing function of the norm of the
gradient∇ψ. In this study, we consider the process given
by

∂ψ

∂t
= div(gη(‖∇ψ‖)∇ψ) , (2)

which is of a form similar to Eq. (1) except for the nonlinear
function gη(·) which is given by

gη(u) = g(u+ η(x, y)) , (3)

where η is a noise assumed independent and identically
distributed with probability density function (pdf)fη(u) and
rms amplitudeση. The noiseη, which is distinct from the
native noise componentξ to be removed, is a purposely
added noise applied to influence the operation ofg(·). In
[Histace and Rousseau, 2006], we have shown that the
injection of a Gaussian noise in Eq. (3) can improve the
restoration process by comparison with standard Perona-
Malik process of Eq. (1) when the native noise component
ξ is a Gaussian, impulsive or multiplicative noise and with
g(·) given by

g(u) = e−
‖u‖2

k2 . (4)

In this expression, parameterk can be seen as a soft
threshold controlling the decrease ofg(·) and the amplitude



of the gradients to be preserved from the diffusion process.
Our previous works [Histace and Rousseau, 2006] and
[Histace and Rousseau, 2007] has shown, as a proof of
feasability, that an injection of a non zero amount of noise
could help the restoration process when the thresholdk

is ill-positioned. We propose here to investigate the inner
mechanism of the useful-noise effect shown in [Histace and
Rousseau, 2006] and [Histace and Rousseau, 2007]. To this
purpose, we propose to simplify the nonlinear functiong(·)
of Eq. (4). The diffusive function of Eq. (4) was chosen in
[Histace and Rousseau, 2006] because it corresponds to the
historical function proposed in [Perona and Malik, 1990].
This choice nevertheless presents some drawbacks for the
complete understanding of the useful-noise effect since the
presence in the analytical definition ofg(·) function of aL2

norm of the purposely noised gradient of the image leads to
an offset shifting that makes the interpretation of the impact
of the noise uneasy.

In this report, we choose to simplify the shape ofg(·) into
a hard threshold non-linearity given by

g(s) =

{

1 if s ≥ k

0 if s < k
, (5)

where parameterk is now a hard threshold. This function
integrates a hard non-linearity in order to set in a binary
way the diffusion threshold. Moreover, this non-linearityis
only function of gradient itself in order to only emphasis the
effect of the purposely injection of noise and to avoid the
shifting effect described above. One can note that despite this
methodological choice regardingg(·) function, this latter is
just a simplified version of the former function proposed in
[Perona and Malik, 1990] and still embed the fundamental
elements of the classical anisotropic diffusion.

For illustration, the data to be restored is also chosen in
its most simplest form. We consider a monodimmensional
signalψori taken as a unit step function modeling an edge
within a noisy image.ψ0 will denote the noisy version of
ψori. The goal is now to restore the noisy step version
without altering the hard discontinuity ofψori. More, we
want to show that injection of noise within the restoration
process can lead to overpass the classical weak point of
Perona-Malik process: a lack of robustness regardingk

parameter illustrated Fig. 2. As visible in Eq. (5) and Fig. 2,
parameterk is a very sensitive parameter for the restoration
task since little variations ofk can lead to completely
different restoration results1. One can notice on Fig. 2 that
for k < 0.5 ψori is not altered by the Perona-Malik diffusion
process and that corrupting noiseξ is removed, whereas for
k > 0.5 if corrupting noiseξ is still removed, a smoothing
of ψori is also introduced. This translates in two dimension

1For this experiment, to apply classical Perona-Malik process toψori,
corresponding equation is sampled with a time stepτ such astn = nτ
wheren is the number of iterations in the process andtn the corresponding
scale
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Figure 1. Illustration of the monodimensional function used for the study.
On the left, the originalψori function. On the right, the corrupted version
ψ0 (ξ is chosen gaussian).

as an alteration of boundaries within images for a bad tuning
of parameterk. In [Histace and Rousseau, 2006] we have
shown that the stochastic variant of Perona-Malik process
of Eq. (2) has a stronger robustness toward the tuning of
parameterk. We provide an interpretation of the mechanism
for this useful-noise effect.

III. STOCHASTIC RESTORATION: THEORETICAL STUDY

A. Preliminary calculations

The non-linearity of Eq. (2) can be classified as a static or
memoryless non-linearity. Possibility of useful-noise effect
in static non-linearity has been intensively studied (see
[Chapeau-Blondeau and Rousseau, 2002] for a review). The
action of the additive noiseη(x, y) can be understood as a
shaping by noise of the input–output characteristic which on
average becomes equivalent to

geff (s) = E[g(s+η(x, y))] =

∫ +∞

−∞

g(u)fη(u−s)du , (6)

with fη(u) the probability density function of the purposely
injected noiseη. In the case of the hard quantizer of Eq. (5)
with thresholdk, Eq. (6) becomes

geff (s) = Fη(k − s) , (7)

whereFη(.) is the cumulative distribution function of the
probability density function offη(u). If we consider the
case wherefη(u) is uniform we have

geff (s) =











0 for k − s ≤ −
√

3ση

1

2

(

1 + k−s√
3ση

)

for |k − s| <
√

3ση

1 for k − s ≥
√

3ση

. (8)
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Figure 2. Illustration of the lack of robustness of classical Perona-Malik
process regarding parameterk. g(·) is given by Eq. (5), iteration number
n is fixed to 50, and time stepτ to 0.2.

geff (·) function corresponds to the average theoretical
equivalent characteristic ofgη(·) in presence of a purposely
added noise with standard deviationση.

B. Experiment

We now propose to compare the behavior of the numerical
diffusion process of Eqs. (3) and (5) with the equivalent
theoretical input–output characteristic of Eq. (6). We choose
the noisy stepψ0 of Fig. 3.(a), and we assess the efficacy of
the restoration process with the normalized cross-covariance
given by

Cψoriψ(tn) =
〈(ψori − 〈ψori〉)(ψ(tn) − 〈ψ(tn)〉)〉

√

〈(ψori − 〈ψori〉)2〉〈(ψ(tn) − 〈ψ(tn)〉)2〉
,

(9)

with 〈..〉 a spatial average,ψ(tn) the different restored steps
calculated with Eq. (2), for (i)geff and (ii) gη, at discrete
instants tn = nτ . We are now in position to perform
subjective and quantitative comparison of bothgeff (·) and
gη(·) functions.

As noticeable on Figs. 3.(b) and 3.(c), restoration results
are perfectly matching between numerical simulation and

theoretical relation (standard deviation ofξ noise is set to
0.05 for illustration) .
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Figure 3. Comparison between real stochastic diffusion process (Eqs. (3)
and (5) and theoretical one (Eq. (6)) on noisy stepψ0.ξ noise is gaussian
of standard deviation fixed to 0.05. iteration numbern is fixed to 150.
(a) ψ0, (b) noise-enhanced diffusion process, (c) diffusion process with
g(·) = geff (·).

This agreement is also valid in Fig. 4 which shows
average evolution of normalized cross-covariance (Eq. (9))
in terms of iteration numbern calculated for 1000 diffusion
processes.
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Figure 4. Comparison of evolution of normalized cross-covariance for
1000 diffusion processes (Eq. (9) between real stochastic diffusion process
(Eqs. (3) and (5) and theoretical one (Eq. (6)) on noisy stepψ0. n is fixed
to 150. (a) noise-enhanced diffusion process, (b) diffusion process with
g(·) = geff (·), (c) superposition of both. One can notice that the scale
for normalized crosscovariance is very tiny: this can be easily explained
by the fact that even corrupted, the noisy version of the stepfunction
remains characterized by a high value of this parameter. Global variations
still remain of primary importance and must be only considered for this
study.

Fig. 4.(c) shows again a perfect matching between both
average evolution curves.

These results establish the link between the useful-noise
effect shown in [Histace and Rousseau, 2006] and the
mechanism at work in static nonlinear systems as described
in [Chapeau-Blondeau and Rousseau, 2002].



IV. STUDY OF THE STOCHASTIC RESONANCE EFFECT

In order to further study the influence of a purposely
injection of noise in classical Perona-Malik process, we
consider in this section thatk in Eq. (5) is badly tuned (i.e.
k > 0.5).

Considering the stochastic version of Perona-Malik pro-
cess (Eq. (2)) withg(·) given by Eq. (5), the purposely
injected noiseη is a zero-mean Gaussian noise characterized
by a tunable rms amplitudeση. For a visual appreciation of
the noise-enhanced process, we consider the noisy stepψ0 of
Fig. 1 andk is set to 0.6, which corresponds to a badly tuned
value regarding Fig. 2. In these conditions, as shown in Fig.
5.(b), Perona-Malik process fails in denoisingψ0 without
altering its integrity. If we now consider the stochastic
Perona-Malik process of Eq. (2) with same parametrization
of k, addition of noiseη acts as a random resetting of
parameterk, and, as shown in Fig. 5.(c), sometimes makes
the preservation of the discontinuity ofψ0 possible whereas
k was badly tuned. It is important to notice, that this positive
effect does not occur systematically, because of the random
nature of the noiseη.
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Figure 5. (a) Noisy stepψ0 = ψori + ξ (rms amplitude ofξ is fixed to
0.05), (b) Perona-Malik restoration ofψ0 (n = 50), (c) Stochastic Perona-
Malik restoration ofψ0 (n = 50 andση = 0.3. For (b) and (c),k is fixed
to 0.6 (badly tuned). Injection ofη noise makes possible to obtain a better
restoration of the noisy step regarding the fact that noise is suppressed and
step discontinuity is preserved.

Although the positive effect of injection ofη noise is
not systematic, this clearly demonstrates that an increaseof
the robustness of classical Perona-Malik process regarding
parameterk is possible with the functiongη(·) proposed.
About the optimal amount of noiseη to inject and about the
possibility to estimate the probability to practically have a
positive effect, we propose to quantitatively characterize the
noise-enhanced effect shown Fig. 5.(c) with the calculation
of the percentage of well-restored steps (no alteration of
the discontinuity) among a large numberN of restoration
attempts, denotedN , and for different values ofση, k being
set up to a non optimal value. This ratio can be interpreted as
a measure of the gain of robustness compare to the classical
Perona-Malik process of Eq. (1) toward thresholdk. Fig. 6

shows the evolution of the percentage of well restored steps
for k = 0.6.
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Figure 6. Variation of the ratio of well restored steps (no alteration of the
discontinuity) thanks to the purposely injection ofη (Eq. (2)) function of
rms amplitudeση . k is fixed to 0.6 andN , the total amount of restoration
attempts, to 1000.

First, one can notice that the variations of the ratio of
well restored steps is typical of the existence of a stochastic
resonance effect related to a static non linearity: we clearly
notice in Fig. 6that the proposed ratio reach a maximum
for a non zero amount of injected noise. Same experiments
can be made for other badly-tuned values ofk. Results are
presented Fig. 7.
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Figure 7. Ratio of non-diffused steps function of rms amplitude ση . N
is fixed to 1000. Dashed line stands fork = 0.65, dotted one fork = 0.7,
dash-dotted one fork = 0.75 and solid one fork = 0.8. For each value
of k, same stochastic effect as before (Fig. 6) can be observed : the non-
diffusion ratio is maximum for a non zero amount of purposelyinjected
noise.

As visible in Fig. 7, even if the maximum value of the



ratio decreases, the useful-noise effect can be observed.
This decrease can be easily explained by the fact the farer
parameterk is from 0.5, the more important is the necessary
amount of noise to inject to finally make an interesting
retuning ofk. As a consequence positive effect of purposely
injected noiseη is less important and presents a maximum
for a value ofση also increasing (which can also be noticed
on Fig. 7). Moreover, that type of curves also makes an
evaluation of the optimal amount of noise to add regarding
k values. For instance, it appears that fork = 0.6 (Fig.
6), a maximum probability of46% of non diffusion of the
discontinuity ofψori can be reached forση = 0.3 thanks to
the stochastic Perona-Malik process.

V. CONCLUSION

In this report, we have established a link between noised-
enhanced anisotropic diffusion and stochastic resonance in
static nonlinearities. This shows the way to non trivial
transposition of 1D stochastic resonance effect to images.
Further investigations in the continuity of this report could
deal with extensions to more complex non-linear PDE of the
literature.

More precisely, in some recent publications ( [Morfu,
2009], [Histace and Ménard, 2010]) dealing with diffu-
sion processes for image restoration, particular nonlinear
anisotropic PDE, integrating a double-well potential function
of the formf(ψ) = ψ(ψ − a)(ψ − 1), have been proposed.
One of the obtained PDE [Morfu, 2009] is an extension of
the Fisher equation, derived from the Perona-Malik PDE,
and given by

∂ψ

∂t
= div(g(‖∇ψ‖)∇ψ) + f(ψ) . (10)

Moreover, noticing that Eq. (11) can be related to the
evolution equation of dynamic systems as described in
[Chapeau-Blondeau, 2000] for instance, for which SR phe-
nomenon have been clearly identified, a complete theoretical
and practical study of those type of PDE could be of
real interest for image restoration. For such a study, the
considered image restoration PDE could be of the form

∂ψ

∂t
= div(g(‖∇ψ‖)∇ψ) + f(ψ) + η(x, y) . (11)

Establishment of a link between Fisher equation and stochas-
tic resonance in dynamic nonlinearities could be of real
interest to propose original restoration processes based on
SR PDE and would complete the study proposed in this
article where the focus was put only on static nonlinearities.
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