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Abstract

Anisotropic regularization PDE’s (Partial Differential Equation) raised a strong
interest in the field of image processing. The benefit of PDE-based regularization
methods lies in the ability to smooth data in a nonlinear way, allowing the preserva-
tion of important image features (contours, corners or other discontinuities). In this
article, a selective diffusion approach based on the framework of Extreme Physical
Information theory is presented. It is shown that this particular framework leads to
a particular regularization PDE which makes the integration of prior knowledge pos-
sible within the diffusion scheme. As a proof of feasibility, results of oriented pattern
extractions are first presented on ad hoc images and second on a particular medical
application: Tagged cardiac MRI (Magnetic Resonance Imaging) enhancement.

Key words: Image Diffusion, Extreme Physical Information, Oriented Pattern
Extraction, Selectivity, Tagged Cardiac MRI.

1 Introduction

Since the pioneering work of Perona-Malik [1], anisotropic regularization PDE’s
raised a strong interest in the field of image processing. The benefit of PDE-
based regularization methods lies in the ability to smooth data in a nonlinear
way, allowing the preservation of important image features (contours, corners
or other discontinuities). Thus, many regularization schemes have been pre-
sented so far in the literature, particularly for the problem of scalar image
restoration [1–12]. In [8] Deriche et al. propose a unique PDE to express the
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whole principle: If we denote ψ(r, 0) : R2 × R+ → R the intensity function
of an image, to regularize the considered image is equivalent to a minimiza-
tion problem of a particular PDE which can be seen as the superposition of
two monodimensional heat equations, respectively oriented in the orthogonal
direction of the gradient and in the tangential direction (Eq. (1) and Fig. 1) :

∂ψ

∂t
=

φ′(‖∇ψ‖)
‖∇ψ‖ ψξξ + φ′′(‖∇ψ‖)ψηη , (1)

where η = ∇ψ/‖∇ψ‖ and ξ⊥η and φ : R→ R is a decreasing function.

This PDE is characterized by an anisotropic diffusive effect in the privileged
directions ξ and η allowing a denoising of a scalar image.

Fig. 1. An image contour and its moving vector basis (ξ, η). Taken from [11].

The major limitations of this diffusion process is its high dependance to the
intrinsic quality of the original image, and the impossibility to integrate prior
information on the pattern to be restored if it can be characterized by par-
ticular data (orientation for example). Moreover, no characterization of the
uncertainty/inaccuracy compromise can be made on the studied pixel, since
the time evolution parameter is not directly integrated in the minimization
problem on which the common diffusion equations rely [13]. In particular ap-
plications, it can be a strong limitation as we will notice in section 2.

In this article, we propose an original PDE directly integrating the scale pa-
rameter, and allowing the taking into account of prior knowledge on the pat-
tern to restore. We propose to use an original theory known as Extreme Physi-
cal Information (EPI) recently developed by Frieden [14], and applied to image
processing by Courboulay et al. [15] to derive this PDE.

The second section of this article deals with the presentation of a possible
practical medical application. The aim of this section is to demonstrate the
validity of our approach. The third section deals with presentation of EPI
and with the obtaining of the particular PDE that will be implemented. The
fourth section presents a direct application to the presented diffusion process
on ad hoc synthetic images. The Fifth section shows results of restoration
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considering particular practical medical case of the second section. The last
part is dedicated to discussion.

2 Practical medical application presentation: tagged cardiac MRI
restoration

The non invasive assessment of the cardiac function is of major interest for the
diagnosis and the treatment of cardiovascular pathologies. Whereas classical
cardiac MRI only enables radiologists to measure anatomical and functional
parameters of the myocardium (mass, volume...), tagged cardiac MRI makes
the evaluation of local intra-myocardial displacements possible. For instance,
this type of information can lead to a precise characterization of the my-
ocardium viability after an infarction. Moreover, data concerning myocardium
viability makes the decision of the therapy possible: Medical treatment, an-
giopathy, or coronary surgery and follow-up of the amelioration of the ventric-
ular function after reperfusion.

The SPAMM (Space Modulation of Magnetization) acquisition protocol [16]
we used for the tagging of MRI data, displays a deformable 45-degrees ori-
ented dark grid which describes the contraction of myocardium (Fig. 2) on the
images of temporal Short-Axis (SA) sequences. This is the temporal tracking
of this grid that can enable radiologists to evaluate the local intramyocardial
displacement.

Fig. 2. SA tagged MRI of the Left Ventricle (LV) extracted from a sequence acquired
between end-diastole and end-systole.

Nevertheless, tagged cardiac images present peculiar characteristics which
make them difficult to analyze. More precisely, images are of low contrast
compared with classical MRI, and their resolution is only of approximately
one centimeter. Numerous studies were carried out concerning the analysis of
the deformations of the grid of tag on SA sequences (see [17,18] for a com-
plete overview), but all have in common the necessary enhancement of tagged
cardiac images, and more precisely of the grid of tags in order to perform
the corresponding tracking using, for instance, a grid of active contours. Since
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no technique has allowed to develop a complete “Gold Standard” method,
we propose to develop a diffusive restoration approach which will make the
enhancement of the oriented grid of tags possible (Fig. 2). This non-linear
smoothing will make the temporal segmentation of the grid using active con-
tours possible.

This methodological choice is principally motivated by the fact that, in this
particular framework, classical image enhancement techniques like Gabor fil-
tering are not totally adapted to generate a potential map of the processed
image, making the precise tracking of the grid possible, using parametric ac-
tive contours, as shown in [19]. More precisely, if Gabor filtering makes a good
regularization of the grid possible [23], it appears that the spatial localization
of the regularized grid is not precise enough to obtain an accurate tracking of
the grid thanks to parametric active contours. However, tracking the tags with
such a parametric active contour grid is of primary interest in the framework
of this application, since the corresponding classical mathematical modeling
using B-splines allows to locally compute geometrical parameters, from which
classical clinical parameters can be derived.

Classically, diffusive restoration approaches like the Perona-Malik’s former one
[1], perform a non-linear smoothing of the data by taking into consideration
the local value of the gradient intensity. This makes the enhancement of the
boundaries of the image possible. Nevertheless, as one can notice on Fig. 3, due
to the fact that norms of the gradient levels of tagged MRI are very noisy, and
then unadapted to classical restoration approaches, it is necessary to develop
a method that integrates within diffusion process more than only this classical
parameter: for instance, calculation and integration of the direction of local
gradients of the grid could be of primary interest.

(a) (b)

Fig. 3. (a) Original Image, (b) Norm of the corresponding gradients. As one can
notice, the grid of tags does not allow us to obtain a good gradient attractor for a
good tracking of the grid.

This can be achieved by considering some variations of the classical restoration
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approaches like, for example, a variant of the classical heat equation process
given by

∂ψ

∂t
= C(||A.∇ψ||)4ψ, (2)

or by a variant of the Perona-Malik’s process [1] given by

∂ψ

∂t
= div(C(||A.∇ψ||)∇ψ) . (3)

For both Eqs (2) and (3), C(u) = e−
u2

λ and A is a vector field defining the
particular direction(s) to preserve from the diffusion process (in this particu-
lar medical application, the gradient direction of the grid). λ represents here
a soft threshold driving the decrease of C(.). In both cases, the directional
weighting of the diffusion process is driven by the scalar product between the
norm of the local gradient and A. As a consequence when local gradient and
A are parallel, there is no diffusion, for C(||A.∇ψ|| = 0, whereas all other
directions are diffused: the grid of tags is enhanced.

Nevertheless, like in all classical diffusion approaches (see references in the
introduction section), these two solutions do not make the integration of the
evolution parameter t (or scale parameter) possible, since corresponding func-
tional to minimize does not integrate it fundamentally, as we previously no-
ticed it.

Moreover, if particular information theories are often used to stop diffusion
process at optimal value of evolution parameter ([7] for instance), the derived
PDE is not directly issued from this chosen information theory. As a conse-
quence, the possibility to optimize uncertainty/inaccuracy compromise during
restoration processes is lost.

That is why we propose, in the following, an adapted restoration process
derived directly from a particular information theory known as EPI, which
directly integrates the time evolution parameter. Concrete results on a par-
ticular presented medical application, which is presented at the end of the
article.
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3 EPI and image diffusion

3.1 EPI

Developed by Frieden, the principle of Extreme Physical Information (EPI) is
aimed at defining a new theory of measure. The key element of this new theory
is that it takes into account the effect of an observer on a measure scenario.
As stated by Frieden [20,14], ”EPI is an observer-based theory of physics”.
By observing, the observer is both a collector of data and an interference that
affects the physical phenomenon which produces the data. Although the EPI
principle brings new concepts, it still has to rest on the definition of infor-
mation. Fisher information was chosen for its ability to effectively represent
the quality of a measure. Fisher information measurement was introduced by
Fisher in 1922 [21] in the context of statistical estimation. In the last ten years,
a growing interest for this information measurement has arisen in theoretical
physics. In his recent book [14], Frieden has characterized Fisher information
measurement as a versatile tool to describe the evolution laws of physical
systems; one of his major results is that the classical evolution equations as
the Schrø̈dinger wave equation, the Klein-Gordon equation, the Helmotz wave
equation, or the diffusion equation, can be derived from the minimization of
Fisher information measurement under proper constraint.

3.2 Shannon entropy and Fisher information

In the following, we consider a random variable X whose probability density
function is denoted as pX(x). Its Shannon entropy writes

HS(X) = −
∫

pX(x) log(pX(x))dx , (4)

and its Fisher information measurement writes

I(X) =
∫ (

∂pX(x)

∂x

)2
dx

pX(x)
. (5)

The analytic properties of the two information measurements are quite dif-
ferent. Thus, whereas HS is a global measurement of smoothness in pX(x), I
is a local measurement. Hence, when minimized through variation of pX(x),
Fisher’s form gives a differential equation while Shannon’s always gives di-
rectly the same form of solution, an exponential function [14].
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Moreover, assuming that Shannon entropy is a particular case of the Kullback-
Leibler cross entropy HKL given by

HKL(X,R) =
∫

pX(x) log

(
pX(x)

pR(x)

)
, (6)

with pR(x) a reference probability density function, I can be related to HKL

as follows [14]:

I(X) = − 2

4x2
HKL(X,X4x) , (7)

where X4x is a random variable whose probability density function is pX(x +
4x). This result is very interesting for the characterization of the diffusion
process as we will see later.

3.3 EPI and image diffusion

Practically speaking, the EPI principle can be seen as an optimization of the
information transfer from the system under measurement to the observer, each
one being characterized by a Fisher Information measure denoted, respectively,
I and J . The first one is representative of the quality of the estimation of
the data, and the second one allows to take into account the effect of the
subjectivity of the observer on the measurement. The existence of this transfer
leads to create fluctuations on the acquired data compared to the real ones. In
fact, this information channel leads to the loss of accuracy on the measurement
whereas the certainty is increased.Information FlowMeasure

System Data
Real data Acquired data

Information J Information I
(Fisher Information)

Fig. 4. Fisher Information

The goal of EPI is then to minimize the difference I − J (i.e. the uncer-
tainty/inaccurracy compromise) denoted K, called the Physical Information
of the system, in order to optimize the information flow.

Application to image diffusion can be illustrated by Fig. 5.
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Fig. 5. Uncertainty/inaccuracy compromise and isotropic image diffusion. When
parameter t → ∞, luminance of all pixels of the corresponding image is the same,
and equal to the spatial average of the initial image.

In this case, we will consider that X is equal to ψ(r, t), the luminance func-
tion characterizing the processed image. As far as isotropic image diffusion is
concerned, the uncertainty deals with the fluctuations of the grey level of a
given pixel compared with its real value, whereas the inaccuracy deals with the
fluctuations of the spatial localization of a given pixel compared with the real
one. The two different errors (εr(t) and εv(t)) of Fig. (5), which are introduced
all along the diffusion process, are characterized by a measurement of Fisher
information (Eq. (7)). Intrinsic Fisher information J will be an integration of
the diffusion constraints we impose on the processing.

Then, we can apply EPI to image diffusion process by considering an image
as a measurement of characteristics (luminance, brightness, contrast) of a
particular scene, and diffusion as the observer of this measurement at a given
scale or a given time parameter. Extreme Physical Information K is then
defined as follows [14,19,22]:

K(ψ) =
∫ ∫

dΩdt×
[
(∇−A) (∇−A) ψ2 + (

∂ψ

∂t
)2 − ψ2

]
, (8)

where ψ(r, 0) : R2 × R+ → R is the luminance function of the original im-
age, and A a potential vector representing the parameterizable constraint(s)
integrated within diffusion process (see also Eqs (2) and (3)).

Extremizing K by Lagrangian approach leads to a particular diffusion equation
given by (see [14] for more details on the calculation itself) :

∂ψ

∂t
=

1

2
(∇−A).(∇−A)ψ . (9)
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As a consequence, the possible parameterization of A, makes the taking into
account of particular characterized patterns possible in order to preserve them
from the diffusion process.

3.4 About A

The A potential allows to control the diffusion process, and introduces some
prior constraints during image evolution. For instance, if no constraint are to
be taken into account, we set A as vector null and Eq. (9) becomes :

∂ψ

∂t
= ∇.∇ψ = 4ψ . (10)

which is the well known heat equation, characterized by an isotropic smoothing
of the processed data.

In order to enlarge the possibility given by Eq. (9), the choice we make for A
is based on the fact that Eq. (9) allows a weighting of the diffusion process
with the difference of orientation between the local calculated gradient, and
A. More precisely, to explain the way A is practically implemented, let us
consider Fig. 6.

ψ

A

ψ

θ’

θ’’

θ

⊥

2

3π

ξ
η

Fig. 6. Local geometrical implementation of A in terms of the local gradient ∇ψ.

The expression of the local gradient ∇ψ in terms of θ” is, considering Fig. 6:

∇ψ =



‖∇ψ‖ cos θ′′

‖∇ψ‖ sin θ′′


 , (11)
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and an expression of A in terms of θ’, and the norm of ∇ψ is:

Aψ =



‖∇ψ‖ cos θ′

‖∇ψ‖ sin θ′


 . (12)

The norm of A is imposed in order to make the comparison with the gradients
possible. To this point, the most interesting expression of A would be the one
in terms of θ which represents the difference angle between A, and the local
gradient. If we made so, using trigonometrical properties and noticing that
θ = |θ′′ − θ′|, we obtain a new expression for A:

Aψ =



‖∇ψ‖(cos θ′′ cos θ + sin θ′′ sin θ)

‖∇ψ‖(sin θ′′ cos θ − cos θ′′ sin θ)


 . (13)

Eq. (13) could be simplified by integrating the vectorial expression of the local
gradient (Eq. (11)):

Aψ = ∇ψ. cos θ +∇⊥
3π
2
ψ. sin θ . (14)

with ∇⊥
3π
2

defined in Fig. 6.

From Eq. (14), we could then derive a general expression for A considering it
as a vectorial operator :

A : ψ 7→ Aψ = ∇. cos θ +∇⊥
3π
2
. sin θ , (15)

with θ the relative angle between A and ∇ψ for a given pixel and ∇⊥ the
local vector orthogonal to ∇ (Fig. 6). This expression only represents the way
it is possible to reformulate A by an orthogonal projection in the local base.
Considering it, Eq. (9) becomes :

∂ψ

∂t
=

∂2ψ

∂η2
.(1− cos θ) +

∂2ψ

∂ξ2
.(1− cos θ) . (16)

One can notice on Eq. (16) that when the angle θis equal to 0 (i.e. A and ∇ψ
are colinear), the studied pixel will not be diffused, since ∂ψ

∂t
= 0. On the con-

trary, a non-zero value of θ will lead to a weighted diffusion of the considered
neighborhood of the pixel (Eq. (16)). As a consequence, by imposing local θ
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values, it is possible to preserve particular patterns from the diffusive effect
within restored image.

To this point, one major difference must be noticed among diffusion processes
of Eqs. (2), (3) and (16): considering the latter, it is possible to select only one
precise orientation of the local gradient not to be diffused thanks a judicious
choice of θ′. This is not possible with Eqs. (2) and (3) as far as diffusion process
is led by a scalar product between A and ∇ψ.

4 Application to the extraction of oriented patterns

In this section, we present some results obtained on some simple images, in
order to show the restoration and the denoising potential of the method. It
is important to keep in mind that the following images have been chosen in
accordance with the tagged MRI enhancement application which remains our
main objective.

For practical numerical implementation, the process of Eq. (16) is discretized
with a time step τ . The images ψ(tn) are calculated, with Eq. (16), at discrete
instant tn = nτ with n the number of iterations of the process.

First, let us consider an image showing vertical, horizontal, and 45◦-oriented
dark stripes on a uniform background (Fig. 7).

Fig. 7. Image 1: Dark stripes with various orientations on a uniform background.

Considering Eq. (16), by imposing two possible orientations for A (135◦, 315◦),
which corresponds to the gradient orientations of the diagonal stripes, one
could expect to preserve them from isotropic diffusion. Diffusion results are
presented Fig. 8.

As expected, the vertical and horizontal dark stripes, within diffused images,
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(a) (b)

Fig. 8. Diffusion of “Image 1” (Fig. 7) for (a) n=100 and (b) n=200. A is chosen in
order to preserve only the diagonal stripes from the isotropic diffusion process. The
time step τ is fixed to 0.2.

tend to disappear whereas the diagonal stripes are preserved all along the
diffusion process.

Let us now consider a noisy simple grid diagonally oriented, and corrupted by
a Gaussian noise of standard deviation set to 0.3.

(a) (b) (c)

Fig. 9. Image 2: (a) Noisy diagonally oriented grid (Gaussian noise). PSNR (cal-
culated with the non corrupted version of the grid as reference) is equal to 68 dB,
(b) Zoom on a particular ROI of (a), (c) Diffusion of (a) for n=50. As one can
notice, the grid itself is preserved from the diffusive effect of Eq. (9) whereas noise
is progressively removed. Time step τ is fixed to 0.2.

To restore the grid without altering the corresponding boundaries, instead
of imposing four orientations for A, which correspond to the four possible
gradient orientations of the grid, we propose to extract this prior directional
information by performing a Gabor filtering on the original corrupted image to
extract the four main orientations. The entire process will be more detailed in
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the next section. Now, if we apply the same diffusion process of Eq. (16) to this
noisy simple grid, one can notice the denoising effect of the diffusion process
(Fig. 9). As intended, the grid itself is not diffused at all and the increase of
the Peak Signal to Noise Ratio (PSNR) from 68 dB to 84 dB, shows that the
added Gaussian noise is progressively removed.

After the presentation of these first results on synthetic ad hoc images, we
now present results obtained on the particular medical application presented:
Enhancement of tagged cardiac MRI.

5 Application to the enhancement of tagged cardiac MRI

5.1 Processing

Considering Fig. 2, and Eq. (16), a solution to the problem of the enhancement
of the grid of tags would have been to impose particular orientations for A,
considering the fact that the gradients to be preserved are well known and
correspond to the orientations of the grid-of-tag ones (45◦, 135◦, 225◦, 315◦).
However, because the contraction of the LV induces a deformation of the tags,
the local orientation of the grid, at a time t, different from the initial one,
can be no more characterized by imposed particular orientations. Moreover,
because of the poor quality of MRI sequences, it appears that a calculation of
the local orientation of A, directly made on cardiac tagged images, would be
strongly corrupted by noise.

As a consequence, we propose again to make this local estimation of the di-
rection of A by performing a Gabor filtering. More precisely, this filtering is
performed in the Fourier’s domain, using the principle developed in [23,24]
(Fig. 10).

FFT Extraction of therelevant frequentialinformation FFT-1
Fig. 10. Extraction of the tag information in the Fourier’s domain.
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This approach allows a denoising of the tag information which leads us to a
more precise estimation of A, and allows to take into account the deformations
of the grid due to the contraction of the LV. In order to compute a precise
estimation of θ angle of Eq. (16, we propose to directly use the method of Rao
[25] and Terebes [10].

5.2 Results

The result presented in Fig. 11.a, shows the restoration of the 45◦-oriented tag
on the first image of a tagged cardiac sequence by the diffusion approach of
Eq. (9). The step size chosen is 0.2. The iteration number is 80 1

(a) (b)

Fig. 11. Preservation of the 45◦-oriented tag on (a) the initial image of a tagged
sequence and (b) for t 6= t0.

As we can see in Fig. 11.a, the diffusion process makes the fading of noisy
artifacts possible , and non-45◦-oriented lines.

Moreover, because orientation of A is locally calculated taking into account
a particular neighborhood, the diffusion process remains efficient even if the
tag is locally deformed due to myocardial contraction (Fig. 11.b).

At last, the enhancement effect of the selective diffusive process can also be
seen on grey-level intensity evolution of a particular profile, extracted from
original and enhanced tagged cardiac images. Fig. 12 shows that selectiveness
of Eq. (9) makes the smoothing of all data except tag profiles possible.

1 This number has been chosen in accordance with a quantitative study involving
a comparison of automatic detection of the tags on restored image, with a manual
expert segmentation. This quantitative study is presented in the next subsection.
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Fig. 12. Up : Original intensity profile extracted from an original tagged cardiac
MRI (orthogonally to orientation of the grid of tags). Bottom : Enhanced image
thanks to the process of Eq. (9) with the parametrization presented in previous
subsection. x-axis represents the pixel position of the profile, y-axis represents the
intensity value of the corresponding pixel. As one can notice, selectiveness of Eq.
(9) makes the smoothing of all data except tag profiles possible.

5.3 Quantitative comparisons with classical PDE-based restoration approaches

Now, in order to evaluate the performance of the proposed restoration ap-
proach for the enhancement of tagged cardiac MRI, we propose to quantita-
tively compare it with classical PDE-based restoration methods. This quanti-
tative study is mainly divided into 3 steps :

(1) First, a radiologist is asked to manually segment the tag of the LV Region
of Interest (see Fig. 13 for visual illustration).

(2) Second, after having restored each tagged MR images of the same database
used by the radiologist, using the considered diffusive method, a classical
valley detection is performed in order to detect the ”tag” pixels (see Fig.
14 for visual illustration). Mainly, this method is based on some local
curvature detections computed on the restored tagged cardiac MR im-
ages. A large bibliography concerning local curvature detections can be
found in [26]. For our purpose, this detection is obtained through the local
calculation of the Hessian matrix eigenvalues locally computed. A classi-
fication of the local eigenvalues allows to only keep the pixels belonging
to valleys, i.e. the tags.

(3) Third, each detected “tag” pixel is compared with the manual detected
ones, and True Positive ratio as False Positive one is then computed. In
order to only take into account pixels within myocardium (Fig. 13), the
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Fig. 13. Manual detection of the 45-degrees oriented tags on the LV Region of
Interest

(a) (b)

(c) (d)

Fig. 14. Detections of valley on the original image and on the diffused one, using our
approach. (a) Original image, (b) detection of valleys computed on (a), (c) restored
image, (d) detection of valley computed (c).
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corresponding Region of Interest is automatically computed thanks to an
original segmentation of the epicardial and the endocardial boundaries
on tagged cardiac MRI, proposed in [27].

The second, and the third step are computed for each iteration number of the
diffusive process considered. For this quantitative study, four classical meth-
ods are compared : the proposed approach, the classical Heat Equation, the
Perona-Malik’s [1] approach and finally, the Weickert’s [28] approach. Quanti-
tative estimations have been computed on 30 tagged cardiac MRI (10 diastole,
10 mid-systole, 10 systole). Results are shown Fig. 15.
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Fig. 15. Comparisons of the detected numbers of “tag” pixels function of diffusive
iteration number among different image restoration approaches. (a) The proposed
method, (b) the classical heat equation, (c) the Perona-Malik’s approach [1], and
finally (d), the Weickert’s approach [28]. For each plot, solid line stands for True
Positive “tag” pixels, and dash line for False Negative “tag” pixels.

Fig. 15.a shows that quantitatively, the number of detected “tag” pixels in-
creases with the iteration number of the proposed restoration approach to
finally reach a maximum of 80%. One can also notice that this increase is
characterized by a smaller increase of the FP “tag” pixels, which is of primary
importance from a clinical point of view (only 18% of FP “tagged” pixels
correspond to the 80% of TP ones). This can be compared to the 90% of TP
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“tag” pixels optimally detected using classical Heat Equation. This percentage
is higher but is to be put in parallel with the corresponding 40% of FP pixels
(Fig. 15.b). This high ratio can be explained by the fact that mathematically,
a tag profile can be modeled by a Gaussian of standard deviation σ. As a
consequence, we can suppose that the optimal result is nearly obtained when
diffusive step t verifies σ =

√
2t. Nevertheless, ratio of FP “tag” pixels is too

important to allow consideration of Heat Equation approach. Concerning now
Figs. 15.c and .d, corresponding quantitative estimations of TP and FP “tag”
pixels show that Perona-Malik’s approach and Weickert’s approach are not
adapted to the tagged MRI restoration problem, since both ratios remains of
low values for each step of the processes.

Finally this quantitative study tends to reinforce the visual impression given
by Fig.11 and shows that the proposed approach leads to more adapted results
than classical approaches.

5.4 Tracking of the grid of tags

In this section, we present a tracking of the grid of tags using a grid of
parametric active contours. The corresponding potential map driving the dis-
placements of the active grid has been performed using the proposed diffusive
restoration approach.

Moreover, the tracking method, integrates the proposed restoration approach
for the computation of the potential map, has been quantitatively compared
to the same approach but in which the potential map is performed using
classical Gabor filtering. Mainly, each approach is evaluated by its sensibility
to the weighting parameters winternal and wexternal of the active grid, thanks
to a measurement of the ratio of badly detected pixels within the whole active
grid. Fig. 18 shows results of this quantitative comparison performed on five
different sequences, each acquired at a different slice level of the LV (from base
to apex 2 ).

This quantitative study shows that for the proposed approach a 20% variation
of the winternal and wexternal ration does not alter significantly the precision of
the detected grid (only 10% of the corresponding pixels are badly detected)
whereas a 10% variation of the ratio leads to a average global behavior of 20%
for the method integrated with Gabor filtering.

2 LV can be roughly represented by a pyramid with a base and a top called “apex”.
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t4 t5 t6

Fig. 16. Detection and tracking of the tagging grid on a SA sequence from diastole
(t1) to end systole (t6).
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Fig. 17. Evolution of the global behavior of detection in terms of the winternal
wexternal

ratio
for the Gabor filtering approach.

6 DISCUSSION

In this article an original diffusion method, based on the utilization of a par-
ticular PDE (Eq. (9)), derived from EPI theory, and directly integrating time
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Fig. 18. Variation of the committed error on the detection of the grid of tags in
terms of winternal

wexternal
ratio corresponding to the integration of the proposed restoration

approach within the tracking process.

evolution parameter in its formulation, has been presented. It has been shown
that the integration of the potential vector A within the formulation of this
PDE makes the integration within the diffusion scheme of particular con-
straints possible. This has been assimilated to integration of selectiveness
within classical isotropic diffusion process. Some examples on some ad hoc
images have been presented to show the potential of the presented method in
the areas of image denoising and extraction of oriented patterns. A particu-
lar application has also been proposed in the case of enhancement of tagged
cardiac MRI, for which interesting results have been obtained, both visually
and quantitatively. It has been demonstrated, as a proof of feasibility, that
the developed approach may find applicability for the extraction of oriented
patterns, which is still an open problem in many different areas of application
like medical ones for instance. Moreover, because A is defined as a poten-
tial vector, one can easily imagine an extension of this work for vector-valued
image regularization.
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[12] D. Tschumperlé, R. Deriche, Vector-valued image regularization with PDE’s: A
common framework for different applications., IEEE Transactions on Pattern
Analysis and Machine Intelligence 27 (2005) 506–517.

[13] N. Nordstrø̈m, Biased anisotropic diffusion-a unified regularization and diffusion
approach to edge detection, Image and Vision Computing 8 (4) (1990) 318–327.

[14] B. Frieden, Physics from Fisher Information, Cambridge University Press, 1998.

[15] V. Courboulay, M. Ménard, M. Eboueya, P. Courtellemont, Une nouvelle
approche du filtrage linaire optimal dans le cadre de l’information physique
extrême, in proceedings of RFIA conference, 2002, pp. 897–905.

[16] E. Zerhouni, D. Parish, W. Rogers, A. Yang, E. Shapiro, Human heart : tagging
with MR imaging - a method for noninvasive assessment of myocardial motion,
Radiology 169 (1) (1988) 59–63.

[17] C. Petitjean, N. Rougon, P. Cluzel, Assessment of myocardial function: A
review of quantification methods and results using tagged MRI, Journal of
Cardiovascular Magnetic Resonance 7 (2) (2005) 501–516.

[18] L. Axel, S. Chung, T. Chen, Tagged MRI analysis using gabor filters, in:
Biomedical Imaging: From Nano to Macro, 4th IEEE International Symposium
on (ISBI), 2007, pp. 684–687.

21
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